First Noscapine Glycoconjugates inspired by Click Chemistry

Kunj B. Mishra¹, Ram C. Mishra,² and Vinod K. Tiwari^{*1}

¹Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi-, India ²College of Pharmacy, University of Georgia, Athens, GA 30605, USA

*Corresponding authors: E-mail: <u>rcmishra@uga.edu</u>, Tel: +1-706-542-5395; Fax: +1-706-542-5358 (RCM); and E-mail: <u>tiwari_chem@yahoo.co.in</u> (VKT), Tel.: +91-542-6702466; Fax: +91-542-236817

Table of Contents

1.	General methods	2
2.	Synthesis of tosyl-sugars (5i-j)	2-3
3.	Synthesis of sugar azides (6i-j)	3-4
4.	Synthesis of sugar epoxides (5k-l)	4-5
5.	Synthesis of sugar azides (6k-l)	5-6
6.	¹ H and ¹³ C NMR of compound 3	7-8
7.	¹ H and ¹³ C NMR of compound 8a-m	9-34
8.	Single Crystal X-ray data of compound 3	35-37

1. General methods

All of the reactions were executed using anhydrous solvents under an argon atmosphere in onehour oven-dried glassware at 100°C. All reagents and solvents were of pure analytical grade. Thin-layer chromatography (TLC) was performed on 60 F254 silica gel, pre-coated on aluminum plates and revealed with either a UV lamp ($\lambda_{max} = 254$ nm) or a specific color reagent (iodine vapors) or by spraying with methanolic H₂SO₄ solution and subsequent charring by heating at 100°C. ¹H and ¹³C NMR were recorded at 300 and 75 MHz, respectively. Chemical shifts given in ppm downfield from internal TMS; *J* values in Hz. Mass spectra recorded using electrospray ionization mass spectrometry (ESI-MS). Infrared spectra recorded as Nujol mulls in KBr plates. Single-crystal Xray data collected on Xcalibur Eos (Oxford) CCD-diffractometer.

2. Synthesis of novel tosyl sugar (5i-j):

1,2-*O***-isopropylidene-3-***O***-Propyl-6-***O***-tosyl-***a***-D-glucofuranose (5i).** A stirring solution of 3-1,2-*O*-isopropylidene-*O*-Propyl- α -D-glucofuranose (1.34 g, 5.1 mmol) in pyridine (15 mL) was treated with *p*-toluene sulphonyl chloride (1.0 g, 5.1 mmol) at 0 °C under anhydrous condition followed by stirring for 12 h at 5-10 °C afforded viscous liquid (1.3 g, 62%); ¹H NMR (300 MHz, CDCl₃): δ 7.79 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 7.8 Hz, 2H), 5.86 (d, *J* = 3.6 Hz, 1H), 4.52 (d, *J* = 3.6 Hz, 1H), 4.28-3.96 (m, 5H), 3.57 (dd, *J* = 6.6 and 15.6 Hz, 1H), 3.43 (dd, *J* = 6.6 and 15.6 Hz, 1H), 2.52-2. 44 (m, 4H), 1.62-1.30 (m, 8H), 0.90 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): 144.9, 132.5, 129.9, 128.0, 111.8, 105.0, 82.7, 81.9, 79.0, 72.1, 67.5, 26.7, 26.1, 22.8, 21.6, 10.5 ppm.

3-O-iso-pentyl-1,2-O-isopropylidene-6-O-tosyl-\alpha-D-glucofuranose (5j). A stirring solution of 3-O-isopentyl-1,2-O-isopropylidene- α -D-glucofuranose (1.6 g, 5.7 mmol) in pyridine (15 mL) was treated with *p*-toluene sulphonyl chloride (1.08 g, 5.7 mmol) at 0 ^oC under anhydrous

condition followed by stirring for 12 h at 10 °C afford the title compound as viscous liquid (1.5 g, 60%); ¹H NMR (300 MHz, CDCl₃): δ 7.79 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 5.85 (d, J = 3.6 Hz, 1H), 4.52 (d, J = 3.6 Hz, 1H), 4.26-3.95 (m, 5H), 3.64 (dd, J = 6.6, 15.6 Hz, 1H), 3.49 (dd, J = 6.6, 15.9 Hz, 1H), 2.88 (d, J = 5.57 Hz, 1H) 2.44 (s, 3H), 1.69-1.23 (m, 13H), 0.91 (d, J = 6.6Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): 144.9, 132.5, 129.9, 128.0, 111.8, 105.0, 82.8, 81.9, 79.0, 72.2, 68.9, 67.5, 38.4, 26.7, 26.2, 24.9, 22.5, 21.6 ppm.

3. Synthesis ofnovel sugar azides (6i-k):

6-Azido-6-deoxy-1,2-*O***-isopropylidene-3-***O***-propyl-α-D-glucofuranose** (**6i**): Reaction of compound **5j** (1.34 g, 3.2 mmol) with NaN₃ (0.62 g, 9.6 mmol) in DMF (15 mL) at 80 ⁰C afforded compound **6i** as viscous liquid (0.81 g, 88 % yield); IR (KBr) cm⁻¹: 3453, 2964, 2935, 2878, 2103, 1633, 1455, 1080;¹H NMR (300 MHz, CDCl₃): δ5.91 (d, *J* = 3.6 Hz, 1H), 4.57 (d, *J* = 3.9 Hz, 1H), 4.10 (m, 2H), 4.00 (s, 1H), 3.66-3.43 (m, 4H), 2.74 (s, 1H), 1.65-1.56 (m, 2H), 1.49 (s, 3H), 1.32 (s, 3H), 0.94 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 111.8, 105.0, 82.8, 81.9, 79.7, 72.0, 68.9, 54.5, 26.7, 26.2, 22.9, 10.5 ppm.

6-Azido-6-deoxy-3-*O-iso***pentyl-1,2-***O***-isopropylidene-***α***-D-glucofuranose** (**6j**): Reaction of compound **5j** (1.5 g, 3.3 mmol) with NaN₃ (1.67 g, 10.0 mmol) in DMF (15 mL) at 80 °C afforded compound **6j** as viscous liquid (0.98 g, 92 % yield); IR (KBr) cm⁻¹: 3472, 2958, 2872, 2104, 1711, 1633, 1466, 1081; ¹H NMR (300 MHz, CDCl₃): δ 5.90 (d, *J* = 3.6 Hz, 1H), 4.56 (d, *J* = 3.6 Hz, 1H), 4.10-3.98 (m, 3H), 3.72-3.43 (m, 4H), 2.62 (s, 1H), 1.72-1. 61 (m, 2H), 1.49, 1.32 (each s, 6H), 0.92-0.90 (m, 7H); ¹³C NMR (75 MHz, CDCl₃): δ 111.8, 105.1, 82.9, 81.9, 79.8, 68.9, 68.8, 54.6, 38.4, 26.8, 26.2, 25.0, 22.5, 22.4 ppm.

4. General procedure for the synthesis of glycosyl epoxides (5k-m): A solution of orthogonally protected sugar 4k-m having one free hydroxyl group (1.0 mmol) in anhydrous

DMF (15 mL) was cooled to 0 °C and sodium hydride (2.0 equiv.) was added portionwise. The reaction mixture was stirred at 0 °C under argon atmosphere for 20 minutes. Epichlorohydrin (1.2 mmol) was added at 0 °C and allowed to stir for 12 hour at room temperature. Upon completion of the reaction (monitor by TLC), excess of sodium hydride was quenched by adding water under inert atmosphere, the solvent was removed under reduced pressure, extracted with ethyl acetate. The organic layer was washed with brine solution, separated, dried over anhydrous Na₂SO₄, filtered, concentrated under vacuum, which on flash chromatography (ethyl acetate: hexane) afforded desired glycosyl epoxide **5k-m**.

1,2:5,6-Di-*O***-isopropylidene-3-***O***-(oxirane-2-ylmethoxy)-α-D-glucofuranose (5k):** Reaction of compound 1,2:5,6-Di-*O*-isopropylidene-α-D-glucofuranose (1.0 g, 3.8 mmol) with epichlorohydrin (0.41 ml, 5.0 mmol) in presence of NaH (0.26, 11.4 mmol) in DMF (10 mL) 12 h afforded compound **5k** as colourless liquid (1.02 g, 85 % yield);¹H NMR (300 MHz, CDCl₃): δ 5.86 (d, J = 4.5 Hz, 1H), 4.56 (dd, J = 3.6, 13.8Hz, 1H), 4.34-4.27 (m, 1H), 4.11-3.84 (m, 5H), 3.66-3.44 (m, 1H), 3.13 (m, 1H), 2.82-2.77 (m, 1H), 2.64-2.61 (m, 1H), 1.49, 1.42, 1.34, 1.31 (each s, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 111.7, 108.9, 105.1, 82.9, 82.5, 81.0, 72.2, 70.5, 67.3, 50.4, 44.0, 26.8, 26.7, 26.1, 25.2 ppm.

1,2:3,4-Di-*O***-isopropylidene-6-***O***-(oxirane-2-ylmethoxy)-***a***-D-galactopyranose (5l):** Reaction of compound 1,2:3,4-Di-*O*-isopropylidene- α -D-galactopyranose (1.5 g, 5.7 mmol) with epichlorohydrin (0.60 ml, 7.4 mmol) in presence of NaH (0.39 g, 17.1 mmol) in DMF (10 ml) for 12 h afforded compound 5l as colourless liquid (1.49 g, 82 % yield); ¹H NMR (300 MHz, CDCl₃): δ 5.53 (d, *J* = 4.5 Hz, 1H), 4.60 (d, *J* = 7.5 Hz, 1H), 4.32-4.26 (m, 2H), 4.24-3.98 (m, 1H), 3.97-3.60 (m, 3H), 3.53-3.40 (m, 1H), 3.17 (m, 1H), 2.78 (t, *J* = 4.2 Hz, 1H), 2.62 (d, *J* =

5.7 Hz, 1H), 1.58-1.33 (merged four s, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 109.2, 108.5, 96.4, 71.0, 70.6, 70.4, 50.4, 44.3, 26.0, 26.7, 24.8, 24.4 ppm.

5. General procedure for the synthesis of glycosyl azido alcohols from epoxides (6k-m): A solution of the compounds **5k-m** in EtOH/H₂O (1:1) treated with NaN₃ and NH₄Cl at 65 °C for 8 h. Upon completion of the reaction, the solvent was removed under reduced pressure, extracted with ethyl acetate and water. The organic layer was dried over anhydrous Na₂SO₄, filtered, concentrated under vacuum, followed by flash chromatography (ethyl acetate: hexane) afforded the desired glycosyl azido alcohol **6k-m** in good yields.

3-*O*-(**3**-**Azido**-**2**-**hydroxypropoxy**)-**1**,**2**:**5**,**6**-di-*O*-**isopropylidene**-*a*-**D**-glucofuranose (6k): Reaction of compound **5**k (1.0 g, 3.1 mmol) with NaN₃ (0.31 g, 4.7 mmol) in presence of NH₄Cl (0.16 g, 3.1 mmol) in EtOH/H₂O (1:1, 10 mL) at 65 °C for 12 h afforded the title compound **6**k as viscous liquid (0.96 g, 86 % yield); IR (KBr) cm⁻¹: 3456, 2988, 2936, 2103, 1667, 1456, 1075; ¹H NMR (300 MHz, CDCl₃): δ 5.90 (d, *J* = 3.3 Hz, 1H), 4.56 (s, 1H), 4.32-4.29 (m, 1H), 4.15-3.75 (m, 6H), 3.59-3.32 (m, 3H), 1.49, 1.44, 1.37, 1.32 (each s, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 111.9, 109.4, 105.4, 84.3, 82.8, 82.3, 81.1, 72.7, 71.3, 70.1, 68.7, 67.7, 53.0, 52.6, 26.7, 26.0, 25.0 ppm.

6-*O*-(3-Azido-2-hydroxypropoxy)-1,2:3,4-di-*O*-isopropylidene-α-D-galactopyranose (6l): Reaction of compound **5l** (1.5 g, 4.7 mmol) with NaN₃ (0.46 g, 7.1 mmol) in presence of NH₄Cl (0.25 g, 4.7 mmol) in EtOH/H₂O (1:1, 10 mL) at 65 °C for 12 h afforded compound **6l** as viscous liquid (1.41 g, 84 % yield); IR (KBr) cm⁻¹: 3434, 2989, 2935, 2103, 1643, 1455, 1383, 1257, 1070; ¹H NMR (300 MHz, CDCl₃): δ 5.53 (d, J = 3.9 Hz, 1H), 4.62 (d, J = 8.1 Hz, 1H), 4.33-4.22 (m, 2H), 3.98-3.88 (m, 2H), 3.70-3.48 (m, 4H), 3.35-3.34 (m, 2H), 3.07 (s, 1H), 1.54, 1.45, 1.38, 1.33 (each s, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 109.4, 108.7, 96.2, 72.9, 72.6, 71.1, 70.6, 70.5, 70.4, 69.9, 69.3, 66.5, 53.2, 25.9, 24.8, 24.4 ppm.

C:\Kunj	B.Mishr	a\KBM-269 1H.als
VDM 0CO	1 II Mm	Kuni Bihari

NMR of compound 3

C:\Kunj EBM-269	B.Mish: 13C Mr	ra`KBM-2 . Funj E	269_130 Bihari	C.als												
		168,054	152.732 148.364	140.939 140.419	132.128	120.845 118.596 118.455 118.134 117.046	102.360 102.219 100.736	81.994 81.846 77.420 77.000 76.580	62.585 61.291 60.789 56.989	46.275	27.979	0.987	JEOL A CHEMIS Banara VARANA	L3(0 F TRY DE s Find SI-221	'TNMR IPARTMEN lu Unive LOO5	NT ersity,
				Y			Y		$\langle \gamma \gamma \rangle$				Operat	or : N S	lagendra Shishir	a Kumar Singh
						сч Н ₃ Сс							DFILE COMNT DATIM OBNUC EXMOD OBFRQ OBFRT OBFIN POINT FREQU SCANS ACQTM PD IRNUC CTEMP SLUNT EXREF BF RGAIN	C:\Ku KEM-2 Tha J 13C BCM 2 1H CDCL3	nj B.Mi 69_13C 75.45 124.00 1840.0 32768 20408.1 174 1.606 1.394 5.9 21.8 77.00 1.20 24	shra\K3M Mr. Kunj 6:26:27 MHz Hz Hz Hz sec sec us c ppm Hz
		ran 11														
			1.1	B	, 1	. 1.	11	1-1	, e i	11	1	ŝ.				
		halan libi al anita Ala anita a sa sa		an a	in the star	E.		up and a share the part								
	175	 	1 150	<u>г г</u>	1 1	125	100	75	5	0.	25	PPM 0				

Figure 2: ¹³C NMR of compound 3

C:\Kunj	B.Mishra\KBM-270 1H.als	
KBM-270	13C Mr.Kuni B. Mishra	

Figure 3: ¹H NMR of compound 8a

C:\Kunj	B.Mishr	a\KBM-27	0 13C.als	3
KBM-270	130 Mr	Kuni B	Michra	

Figure 4: ¹³C NMR of compound 8a

C:\Kunj	B.Mishra\KBM-	276 1H .als
V34-276	11 Ma Mand D	Winham

Figure 5:¹HNMR of compound 8b

C:\Kunj	B.Mishra\KBN-276 130	.als
KEM-276	13C Mr. Kuni B. Mishr	a

Figure 6:¹³C NMR of compound 8b

C:\Kunj B.Mishra\KBM-285_1H.als KBM-285 1H Mr.KBM

Figure 7:¹HNMR of compound 8c

C:\Kunj B.Mishra\KBM-285CREV_13C.als KBM-285CREV 13C Mr. Kunj

Figure 8:¹³C NMR of compound 8c

Figure 9:¹HNMR of compound 8d

Figure 10:¹³C NMR of compound 8d

C:\Kunj B.Mishra\KBM-NO24_1H.als KBM-NO24 1H Mr.KBM

Figure 11:¹HNMR of compound 8e

C:\Kunj	B.Misł	ra\KBM-	-NO24	13C.als
	-	V . Carlos and a local sector		

KBM-NO24 1H Mr .KBM

Figure 12:¹³C NMR of compound 8e

C:\Kunj B.Mishra\KBM-284_1H.als KBM-284 1H Mr.KBM

Figure 13:¹HNMR of compound 8f

```
C:\Ku:ij B.Mishra\KBM-:84_13C.als
```

KBM-2:4 1H Mr.KBM

Figure 14: ¹³C NMR of compound 8f

Figure 15:¹HNMR of compound 8g

C:\Kunj B.Mishra\KBM-275_13C.als KBM-275_1H Mis Kunj Bihari Mishra	
(68.194 (52.584 (40.807 (40.807 (40.807 (40.807 (40.807 (40.807 (40.807 (40.807 (40.807 (40.807 (16.766 (17.555 (67.555 (67.555 (67.719 (117)(17)(12)(17)(17)(17)(17)(17)(17)(17)(17)(17)(17	JEOL \L300 FTNMR CHEMI 3TRY DEPARTMENT Banar is Hindu Univers ty, VARAN \SI-221005
	Operator : Nagendra Kumar Shishir Singh
$ \begin{array}{c} O \\ O \\ O \\ O \\ O \\ O \\ H_{3} \\ O \\ H_{3} \\ O \\ O \\ H_{3} \\ O \\ O \\ O \\ H_{3} \\ O \\ $	DFILE C:\Kunj B.Mishra\KBM COMNT KBM-275_1H Mr. Kunj DATIM Wed Jan 29 15::9:25 OBNUC 13C EXMOD BCM OBFRQ 75.45 MH:: OBSET 124.00 KH:: OBST 124.00 KH:: OBFIN 1840.0 Hz POINT 32768 FREQU 20408.1 Hz SCANS 200 ACQTM 1.606 sec PD 1.394 sec PW1 5.9 us IRNUC 1H CTEMP 23.2 c SLVNT CDCL3 EXREF 77.00 ppm BF 1.20 Hz RGAIN 23
PPM 175 150 125 100 75 50 25 0	e Songa

Figure 16:¹³CNMR of compound 8g

Figure 17:¹HNMR of compound 8h

```
C:\Kinj B.Mishra\KBM-280_13C.als
```

KBM-2	80	1H	Mr	. KBM	

Figure 18:¹³C NMR of compound 8h

C:\Kunj	B.Mishra	KBM-333P2	1H.als

Figure 19:¹HNMR of compound 8i

Figure 20:¹³C NMR of compound 8i

Figure 21:¹HNMR of compound 8j

Figure 23:¹HNMR of compound 8k

Figure 24:¹³C NMR of compound 8k

C:\Kunj B.Mishra\KBM-291_1H.als KEM-291 1H Mr.KBM

Figure 25:¹HNMR of compound 8l

KBM-291 1H Mr.KBM

Figure 26:¹³CNMR of compound 8l

Figure 27:¹HNMR of compound 8m

C:\Kunj B. ishra\KBM-292_13C.als

Figure 28:¹³C NMR of compound 8m

Single Crystal X-ray data

Single-crystal X-ray data of compound**5a** was collected on Xcalibur Eos (Oxford) CCD diffractometer using graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å). The data integration and reduction were processed with CrysAlis Pro software. The structures were solved by the direct method and then refined on F^2 by the full matrix least-squares technique with the SHELX-97 set of softwareusing the WinGX (version 1.80.05) program package. All non-hydrogen atoms were refined anisotropically and hydrogen atoms were treated as riding atoms using SHELX default parameters. Molecular structures have drawn using ORTEP software given in Figure S-1. Further information on the crystal structure determination (excluding structure factors) has been deposited in the Cambridge Crystallographic Data Centre as supplementary publications no.**949197**. Copies of the data can be obtained free of charge upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033. e-mail: deposit@ccdc.cam.ac.uk) or via internet.

_

Compound	3
Empirical Formula	C ₂₄ H ₂₃ NO ₇
Formula Weight	437.44
Crystal System	Monoclinic
Space group	P 21
a (Å)	8.5515(14)
<i>b</i> (Å)	11.720(3)
<i>c</i> (Å)	11.059(2)
β (°)	100.720(17)
$V(Å^3)$	1089.0(4)
Z	2
Density (calc)	1.334
F(000), F'(000)	460.0,460.26
μ (mm ⁻¹)	0.099
Crystal Size [mm]	0.09 x 0.11x 0.14
Temperature (K)	293
Radiation	ΜοΚα 0.71073
heta Min-Max [°]	3.3, 29.190
h, k, l	-10:11; -11:16; -17:12
Tot.,UniqData, R(int)	4714, 3367, 0.106

Table S1. Crystallographic refinement data for compound 3a

Figure S1. Molecular structure of **3a**. Thermal ellipsoids of C, N, and O are set at 40 % probability