Coordination versatility of phosphine derivatives of fluoroquinolones. New Cu(I) and Cu(II) complexes and their interactions with DNA.

A. Bykowska, R. Starosta, J. Jezierska and Małgorzata Jeżowska-Bojczuk

^aFaculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław,

Table S1. Data from NMR spectra in CDCl₃ of compounds PCp, PNr and their copper(I) complexes.

	РСр		[Cu ^I -PCp]		PNr		[Cu ^I -PNr]	
	δ [ppm]	J[Hz]	δ [ppm]	J[Hz]	δ [ppm]	J[Hz]	δ [ppm]	J[Hz]
³¹ P	- 27.42		-18.80		- 27.50		-18.14	
H ^{Ph}	7.47-7.34		7.42-7.17		7.46-7.33		7.44-7.17	
H^1	3.29	$^{2}J(H^{1}-P) = 2.9$	n.o		3.29	$^{2}J(H^{1}-P) = 2.8$	3.59	
H ^{2,6}	3.37		3.21		3.36		3.16	
H ^{3,5}	2.90		2.79		2.89		2.77	
H^{16}	7.47 - 7.34		7.42-7.17		6.82	$^{4}J(H^{16}-F) = 6.8$	6.76	${}^{4}J(H^{16}-F) = 6.9$
H^{13}	7.95	$^{3}J(H^{13}-F) = 13.8$	7.94	$^{3}J(H^{13}-F) = 13.3$	7.95	$^{3}J(H^{13}-F) = 13.0$	8.00	$^{3}J(H^{13}-F) = 13.2$
H^{19}	8.71		8.66		8.63		8.62	
H^{21}	3.53		3.56		4.31		4.30	
H ²²	1.39		1.39		1.56		1.57	
H ²²	1.18		1.13		-		-	
H ²³	15.01		15.06		15.13		15.14	
H ^{3,8(dmp)}	-		7.51	${}^{3}J(H^{3,8}-H^{4,7}) = 8.22$			7.52	$^{3}J(H^{3,8}-H^{4,7}) = 8.22$
H ^{4,7(dmp)}	-		8.18	$^{3}J(H^{3,8}-H^{4,7}) = 8.24$			8.19	${}^{3}J(H^{3,8}-H^{4,7}) = 8.21$
H ^{5,6(dmp)}	-		7.74				7.76	
H ^{15,16(dmp)}	-		2.90				2.88	

Figure S2. Electronic spectra of Cu^I and Cu^{II} complexes performed for the fresh solution (5 min) and after 1, 2, 4, 8, 12, 24 and 48 h.

X-ray:	[Cu ^I -PCp]	[CuI(dmp)PPh ₃]*
Cu1 - I1	2.5596(4)	2.6284(9)
Cu1 - N42	2.068(2)	2.090(4)
Cu1 - N41	2.130(2)	2.074(4)
Cu1 - P1	2.2184(9)	2.2052(15)
N41 - Cu1 - N42	79.98(10)	80.58(17)
I1 - Cu1 - N42	117.44(7)	117.04(12)
I1 - Cu1 - N41	118.51(7)	105.71(13)
I1 - Cu1 - P1	123.61(3)	121.26(5)
N41 - Cu1 - P1	100.56(7)	120.66(13)
N42 - Cu1 - P1	107.60(7)	117.04(12)

Table S2. Selected geometries of [Cu^I-PCp] and [CuI(dmp)PPh₃]. (Bond lengths [Å], angles [°])

* R. Starosta, M. Puchalska, J. Cybińska, M. Barys and A.V. Mudring, *Dalton Trans.*, 2011, 40, 2459-2468.

Figure S3. Fluorescence quenching of ctDNA:EB ($c=5 \cdot 10^{-5}$ M) by a) HCp, b) PCp, c) OPCp, d) [Cu^I-PCp], e) [OPCp-Cu^{II}]⁺, (molar ratios 0.5; 1.0; 2.0; 5.0 and 10.0) in 50 mM pH 7.4 buffer.

Figure S4. Fluorescence quenching of ctDNA:EB ($c=5 \cdot 10^{-5}M$) by a) HNr, b) PNr, c) OPNr, d) [Cu^I-PNr], e) [OPNr-Cu^{II}]⁺, (molar ratios 0.5; 1.0; 2.0; 5.0 and 10.0) in 50 mM pH 7.4 buffer.

Figure S5. Molecular docking: preparation of the gaps.

Figure S7. Molecular docking: the docking of PCp (with the scoring function result)

Figure S8. Molecular docking: the docking of OPCp (with the scoring function result)

Figure S9. Molecular docking: the docking of [Cu^I-PCp] (with the scoring function result)

Figure S10. Molecular docking: the docking of [OPCp-Cu^{II}]⁺ (with the scoring function result)

B-(GC-GC): -9.5

Figure S12. Molecular docking: the docking of PNr (with the scoring function result)

Figure S13. Molecular docking: the docking of OPNr (with the scoring function result)

Figure S14. Molecular docking: the docking of [Cu^I-PNr] (with the scoring function result)

Figure S15. Molecular docking: the docking of **[OPNr-Cu^{II}]**⁺ (with the scoring function result)

Figure S16. Molecular docking: the docking of [HCp-Cu^{II}]⁺ (with the scoring function result)

B-(GC-GC): -10.0

Figure S17. Molecular docking: the docking of **[HNr-Cu^{II}]**⁺ (with the scoring function result)

Figure S18. Molecular docking: the docking of **[Cu^I-POH]**⁺ (with the scoring function result)

B-(GC-GC): -7.1

Figure S19. Molecular docking: the docking of PI (with the scoring function result)

B-(AT...AT): -6.5

