Supporting Information

Enzymatic Synthesis of DNA-templated Alloy Nanocluster and Its Application in Fluorescence Immunoassay

Tai Ye,^a Chunying Li,^a Chen Su,^a Xinghu Ji,^a and Zhike He*ab

 ^a Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
 ^b Suzhou Instituite of Wuhan University, Suzhou, 215123, PR China. E-mail: zhkhe@whu.edu.cn; Fax: +86-27-6875-4067; Tel: +86-27-6875-6557

*Address correspondence to zhkhe@whu.edu.cn.

Figure S1. The fluorescence of the Cu/Ag NCs with various reduction time.

Figure S2. (A) Typical fluorescence spectral responses of obtained Cu/Ag NCs under various PPi concentrations at a fixed reduction time of 60 min. (B) Plot of peak intensity of obtained Cu/Ag NCs with respect to PPi concentrations.

Figure S3 The effect of incubation time on the assay performance. The concentration of ALP was 10 U L^{-1} .

Figure S4 (A) Fluorescence spectra of obtained Cu/Ag NCs in the presence of ALP with different concentrations. (B) Calibration curve for ALP detection. Inset: the linearity of peak intensity with respect to lower ALP concentrations. Error bars were estimated from three replicate measurements.

Figure S5 The selectivity of the Cu/Ag NCs based method for ALP assay. The concentration was 20 pM for ALP and 2 nM for each other interfering proteins.

Figure S6 The inhibition effect of Na₃VO₄ on ALP activity.

Technique	Analytical Method	Dynamic Range	LOD	Time of Incubation
Fluorescence ¹	CdTe/CdS QDs	3~1000 U/L	3 U/L	10 min
Fluorescence	β-cyclodextrin-modified	0~800 U/L	10 U/L	10 min
Resonance	QDs			
Energy Transfer ²				
Fluorescence ³	Enzymatic Formation of	0~800 U/L	0.5 U/L	50 min
	QDs			
Colorimetry ⁴	Gold Nanoparticle	32~100000 U/L	3 U/L	65 min
Fluorescence ⁵	Carbon QDs	16.7~782.6 U/L	1.1 U/L	30 min
Colorimetry ⁶	Cu ²⁺ -catalyzed ABTS-	30~400 U/L	27 U/L	30 min
	H_2O_2			
Fluorescence	Enzymatic Formation of	0.5~15 U/L	0.3 U/L	60 min
(This work)	Nanocluster			

 Table S1. Comparison of different assays for ALP detection.

Samples	Add	Found	Recovery
	(ng mL ⁻¹)	$(ng mL^{-1})$	(%)
1	12	12.71	105.9
2	30	29.37	97.9
3	45	40.39	89.8
4	50	51.32	102.6

Table S2. Determination of AFP added in normal human serum with this proposed immune strategy.

Reference

- 1. X. Ren, Z. Chen, X. Chen, J. Liu and F. Tang, Journal of Luminescence, 2014, 145, 330-334.
- L. Jia, J.-P. Xu, D. Li, S.-P. Pang, Y. Fang, Z.-G. Song and J. Ji, Chem. Commun., 2010, 46, 7166-7168.
- 3. N. Malashikhina, G. Garai-Ibabe and V. Pavlov, Anal. Chem., 2013, 85, 6866-6870.
- H. Jiao, J. Chen, W. Li, F. Wang, H. Zhou, Y. Li and C. Yu, ACS Appl. Mater. Interfaces, 2014, 6, 1979-1985.
- Z. S. Qian, L. J. Chai, Y. Y. Huang, C. Tang, J. Jia Shen, J. R. Chen and H. Feng, *Biosens*. *Bioelectron.*, 2015, 68, 675-680.
- 6. L. Zhang, M. Li, Y. Qin, Z. Chu and S. Zhao, Analyst, 2014, 139, 6298-6303.