Supplementary Material

Anti-Inflammatory Sesquiterpenes from the Medicinal Herb *Tanacetum* sinaicum

Mohamed-Elamir F. Hegazy,^a Ahmed R. Hamed,^a Tarik A. Mohamed,^a Abdessamad Debbab,^b Seikou Nakamura,^c Hisashi Matsuda^c and Paul W. Paré^{*,d}

^aPhytochemistry Department and Center of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.) Dokki, Giza, Egypt, P. O. 12622.

^bPharmaceutical Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Geb. 26.23, D-40225 Düsseldorf, Germany

^cKyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan

^dDepartment of Chemistry & Biochemistry Texas Tech University, Lubbock, TX 79409 USA

Index

S3	Table S1. Cell NO inhibition by 1–10
S4	Figure S1. MTT cell toxicity
S5	¹ H NMR spectrum 1 in CDCl ₃
S6	¹³ C NMR and DEPT spectrum of 1 in CDCl ₃
S7	¹ H- ¹ H COSY spectrum of 1 in CDCl ₃
S8	HMQC spectrum of 1 in CDCl ₃
S9	HMBC spectrum of 1 in CDCl ₃
S10	NOESY spectrum of 1 in CDCl ₃
S11	¹ H NMR spectrum of 2 in CDCl ₃
S12	¹³ C NMR and DEPT spectrum of 2 in CDCl ₃
S13	¹ H- ¹ H COSY spectrum of 2 in CDCl ₃
S14	HMQC spectrum of 2 in CDCl ₃
S15	HMBC spectrum of 2 in CDCl ₃
S16	NOESY spectrum of 2 in CDCl ₃
S17	¹ H NMR spectrum 3 in CDCl ₃
S18	¹³ C NMR and DEPT spectrum of 3 in CDCl ₃
S19	¹ H- ¹ H COSY spectrum of 3 in CDCl ₃
S20	HMQC spectrum of 3 in CDCl ₃
S21	HMBC spectrum of 3 in CDCl ₃
S22	NOESY spectrum of 3 in CDCl ₃

Compound							
	0	1	3	6	10	30	IC ₅₀ (µM)
Inhibation (%)	1						
1	0.0±2.2	6.1±1.7	9.8±1.6**	20.3±1.2**	32.4±1.9**	94.3±1.3**	15.7
2	0.0± 1.4	10.5 ± 2.0	2.8±1.6	8.6±1.4	0.4 ± 2.8	4.3 ± 2.9	>30
3	0.0±1.2	12.5 ± 2.3	3.8 ± 4.6	10.9±1.8	0.6±3.8	6.3 ± 2.9	>30
4	0.0±1.6	49.0±15.7**	62.7± 0.5**	88.3±0.5	97.6± 0.3**	100.7± 0.7**	1.0
5	0.0± 5.4	19.3± 5.3	14.4 ± 5.0	10.2 ± 2.2	7.0±1.3	19.9± 3.6	>30
6	0.0±2.7	7.9±2.5	29.2±11.8	3.6 ± 3.3	8.8±2.7	19.2 ± 8.0	>30
7	0.0± 2.5	1.9±1.4	6.8±1.1	4.5±2.3	11.3± 3.4**	32.0± 0.5**	>30
8	0.0 ± 2.6	-2.4 ± 3.2	-3.4 ± 1.6	-3.9 ± 2.3	-24.8± 6.1**	-10.6± 2.2	>30
9	0.0 ± 3.3	28.2±2.9**	24.4± 1.3**	22.0± 5.7**	25.9±1.2**	26.9±2.9**	>30
10	0.0± 3.9	41.3± 8.6	1.2±12.8	21.1±4.0	4.2±3.3	12.1±2.9	>30
CAPE	0.0±0.7	13.4±0.8**	37.8±0.7**	84.7±0.9**	95.9±0.8**	-	3.1

Table S1. Cell NO inhibition by **1–10**

Values represent means±S.E.M. (n=4). Significantly different from the control (0 μ M), **p<0.01

Figure S1. MTT cell toxicity for 4 with RAW264.7 cells; values represent means \pm S.E.M. (n = 4), with significantly differences from solvent control (p < 0.01) indicated (**).

¹H NMR spectrum **1** in CDCl₃

 $^{1}\text{H-}^{1}\text{H}$ COSY spectrum of **1** in CDCl₃

HMQC spectrum of **1** in CDCl₃

HMBC spectrum of **1** in CDCl₃

NOESY spectrum of **1** in CDCl₃

¹H NMR spectrum of **2** in CDCl₃

 ^{13}C NMR and DEPT spectrum of $\boldsymbol{2}$ in CDCl_3

 $^{1}\text{H}\text{-}^{1}\text{H}$ COSY spectrum of **2** in CDCl₃

HMQC spectrum of **2** in CDCl₃

HMBC spectrum of **2** in CDCl₃

NOESY spectrum of **2** in CDCl₃

¹H NMR spectrum **3** in CDCl₃

 $^{1}\text{H-}^{1}\text{H}$ COSY spectrum of **3** in CDCl₃

HMQC spectrum of **3** in CDCl₃

HMBC spectrum of **3** in CDCl₃

NOESY spectrum of **3** in CDCl₃