A quinoline based Schiff-base compound as *p*H sensor

Shibashis Halder, Sudipto Dey and Partha Roy*

Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, India E-mail: proy@chemistry.jdvu.ac.in; Tel: +91-3324572267; Fax: +91-3324146414

Fig. S1: FT-IR spectrum of BQB

Fig. S2: ESI mass spectrum of BQB in methanol

Fig. S3: ¹H NMR of BQB recorded in CDCl₃.

Fig. S4: ¹³C NMR of BQB recorded in CDCl₃.

Fig. S5: ¹H NMR of **BQB** in the presence of H^+ in DMSO-d₆.

Fig. S6: Plot of $\log[(F_{max}-F)/(F-F_{min})]$ vs pH.

The pK_a of **BQB** has been measured using the Henderson–Hasselbach type mass action equation $\log\{(F_{max}-F)/(F-F_{min})\} = pH-pK_a$, where F_{max} , F_{min} , F represent the maximum, minimum and observed fluorescence intensity at a given pH value, respectively and it is found to be 6.3.

Fig. S7: Comparison of fluorescence response of **BQB** at pH 7.5 towards different ions at 25 °C (λ_{ex} : 380 nm); 1, blank; 2, Na⁺; 3, K⁺; 4, Zn²⁺; 5, Mg²⁺; 6, Cu²⁺; 7, Mn²⁺; 8, Fe³⁺; 9, Co²⁺; 10, Ca²⁺; 11, Ni²⁺; 12, NO₃⁻; 13, Cl⁻; 14, SO₄²⁻; 15, PO₄³⁻; 16, BO₃³⁻.

Fig. S8: Sigmoidal curve obtained by plotting Fluorescence Intensity of BQB against pH.

Fig. S9: Angle deviation between two optimized structures

Fig. S10: Frontier MOs along with their HOMO LUMO energy gap of BQB and PBQB

Fig. S11: Isodensity surface plots of the highest and lowest singly occupied molecular orbitals, HSOMO and LSOMO for the compounds BQB and PBQB at their T₁ state geometry

Fig. S12: Fluorescence spectrum of water of river Ganga in the presence of **BQB** $(1 \times 10^{-4} \text{ M})$ at room temperature (Excitation: 380 nm)

Fig. S13: Absorption spectrum of **BQB** (1×10^{-4} M) in water of river Ganga at room temperature

Fig. S14: Plot of ratio of fluorescence intensities of **BQB** in river water at 453 nm and 550 nm i.e. I_{435}/I_{550} vs. pH. I_{435}/I_{550} value of river water with **BQB** corresponds to pH 7.88