Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Synthesis, Characterisation and Enhanced Electrochemical Performance of Nanostructured Na₂FePO₄F for Sodium Batteries

Markas Law,^a Vishwanathan Ramar,^a and Palani Balaya*^a

^aDepartment of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 *Corresponding author. Tel: +65 6516 7644; Fax: +65 6779 1459. Email: <u>mpepb@nus.edu.sg</u>

Supporting information

Fig. S1. TGA curves of (a) pristine; and (b) HEBM Na₂FePO₄F samples obtained at a heating rate of 5°C min⁻¹ from room temperature to 600°C.

From the TGA curves (**Fig. S1**), the decrease in weight from room temperature to around 100°C is attributed to the release of water of crystallization.^{1, 2} Therefore, the carbon content measurement is taken from ~100°C onwards.

Fig. S2. Three-electrode galvanostatic cycling at 1 C of the Na₂FePO₄F WE electrode against the Na CE and RE.

Galvanostatic cycling was conducted on a three-electrode cell at 1 C with the HEBM sample as the working electrode (WE) and metallic sodium as the reference electrode and counter electrode (CE). The resulting voltage profile is shown in **Fig. S2**. As can be seen, the two-voltage plateaus observed during charging and discharging arises from the electrochemical activity of the WE itself and not from the formation of a passivation film on the CE. ³ Although the CE displays a voltage step during discharge due to the formation of a passivation film, the two-voltage plateau is still clearly visible on the WE profile, which further clarifies that this two-voltage profile belongs to the WE.

Fig. S3. *Ex-situ* XPS spectra of (a) Na⁺; (b) P⁵⁺; and (c) O^{2–} obtained on a fresh, charged and discharged electrode.

Fig. S4. Rietveld refinement profile of the (a) pristine; and (b) HEBM sample with no antisite disorder.

wp res, p res Blagg res, r r r C r r						
Site	Ions	x	у	z	Occ (th)	Occ (calc)
Nal	Na ⁺	0.22029	0.24281	0.31448	1	0.9925
	Fe ²⁺				0	0.0071
Na2	Na ⁺	0.25313	0.1303	0.07528	1	0.9935
	Fe ²⁺				0	0.0070
Fe1	Fe ²⁺	0.24112	0.01103	0.32912	1	0.9857
	Na ⁺				0	0.0075
	Na ⁺				0	0.0069
P1	P ⁵⁺	0.22406	0.38236	0.08666	1	1
F1	F^-	0	0.13296	0.25	1	1
F2	F^-	0.5	0.12725	0.25	1	1
01	O ^{2–}	0.29233	0.36647	-0.03597	1	1
O2	O ^{2–}	0.35626	0.30436	0.14498	1	1
03	O ^{2–}	-0.14665	0.37767	0.09832	1	1
04	O ^{2–}	0.33977	0.47016	0.13837	1	1
Total %	of Fe occ	upying Na sites	s = 1.41%			

Table S1. Site occupancies and percentage of iron in sodium sites of the pristine sample. $R_{wp} = 2.84; R_p = 2.22$ and $R_{Bragg} = 2.04$; space group: *Pbcn*

Table S2. Site occupancies and percentage of iron in sodium sites of the HEBM sample. $P_{1} = 2.10; P_{2} = 1.73 \text{ and } P_{2} = -2.34; SC: Phone$

$R_{\rm wp} = 2.19; R_{\rm p} = 1.73$ and $R_{\rm Bragg} = 2.34;$ SG: Pbcn							
Site	Ions	x	у	z	Occ (th)	Occ (calc)	
Na1	Na ⁺	0.25804	0.24388	0.31509	1	0.9988	
	Fe ²⁺				0	0.0021	
Na2	Na ⁺	0.22264	0.1473	0.09175	1	0.9985	
	Fe ²⁺				0	0.0027	
Fe1	Fe ²⁺	0.2646	-0.00433	0.3422	1	0.9981	
	Na ⁺				0	0.0011	
	Na ⁺				0	0.0010	
P1	P ⁵⁺	0.26813	0.38391	0.05545	1	1	

F1	F ⁻	0	0.12212	0.25	1	1	
F2	F ⁻	0.5	0.07716	0.25	1	1	
01	O ^{2–}	0.3119	0.38407	-0.07688	1	1	
02	O ^{2–}	0.33593	0.29738	0.13674	1	1	
03	O ^{2–}	-0.04772	0.37534	0.12525	1	1	
04	O ^{2–}	0.28851	0.47739	0.1622	1	1	
Total % of Fe occupying Na sites = 0.48%							

From the tables above, the pristine Na_2FePO_4F sample exhibits the most antisite disorder, with a total concentration of 1.41% of its Fe^{2+} simultaneously occupying both the Na sites. The HEBM sample shows the least antisite disorder, with just a total of 0.48% Fe^{2+} simultaneously occupying both the Na sites.

References

- 1. J. Yu, J. Hu and J. Li, *Applied Surface Science*, 2012, **263**, 277-283.
- 2. P. P. Prosini, P. Gislon, C. Cento, M. Carewska and A. Masci, *Materials Research Bulletin*, 2013, **48**, 3438-3448.
- 3. A. Rudola, D. Aurbach and P. Balaya, *Electrochemistry Communications*, 2014, **46**, 56-59.