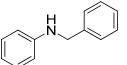
A conjugated ketone as a catalyst in alcohol amination reactions

under transition-metal and hetero-atom free conditions

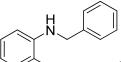
Xingchao Dai, Xinjiang Cui, Youquan Deng, and Feng Shi*

Supporting Information

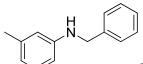

General

NMR spectra were measured using a Varian NMR system at 400.1 MHz (¹H) and 100.6 MHz (¹³C). All spectra were recorded in CDCl₃ and chemical shifts (δ) are reported in ppm relative to tetramethylsilane referenced to the residual solvent peaks.

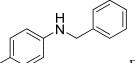
Typical procedure for benzyl alcohol amination with aniline


All of the reactions were performed in a pressure tube. Aniline (1 mmol), 1.5 mmol alcohol, 50 mg of catalyst, 0.5 mmol KOH and 2 mL of toluene were added to a pressure tube followed by exchange with Ar. The tube was sealed and maintained at 150°C for 4-8 h. After completion of the reaction, the tube was cooled to room temperature, and 10 mL of EtOH were added for quantitative analysis with a GC-FID (Agilent 7890A). The crude mixture was purified by column chromatography.

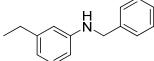
Synthesis of N-benzylaniline¹


Benzyl alcohol (162 mg, 1.5 mmol), aniline (93 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 4 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.15). Following the procedure above, N-benzylaniline (light yellow solid, m.p. 35-36 °C) was obtained (174 mg, Isolated yield = 95%). ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (m, 5H), 7.17 (m, 2H), 6.72 (m, 1H), 6.64 (m, 2H), 4.33 (s, 2H), 4.03 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 148.18, 139.47, 129.29, 128.66, 127.54, 127.26, 117.60, 112.88, 48.37.

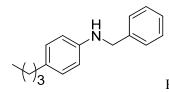
Synthesis of N-benzyl-2-methylaniline²


Benzyl alcohol (162 mg, 1.5 mmol), 2-methylaniline (107 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column

chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.18). Following the procedure above, N-benzyl-2-methylaniline (light yellow solid, m.p. 57-59 °C) was obtained (120 mg, Isolated yield = 61%). ¹H NMR (400 MHz, CDCl₃): δ = 7.37 (m, 4H), 7.28 (t, 1H), 7.09 (dd, 2H), 6.65 (m, 2H), 4.37 (s, 2H), 3.89 (s, 1H), 2.17 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 146.05, 139.50, 130.10, 128.69, 127.59, 127.29, 127.19, 117.25, 110.06, 48.37, 17.58. Synthesis ofN-benzyl-3-methylaniline²

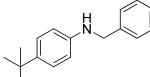

Benzyl alcohol (162 mg, 1.5 mmol), 3-methylaniline (107 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 4 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.15). Following the procedure above, N-benzyl-3-methylaniline (yellow liquid) was obtained (191 mg, Isolated yield = 97%). ¹H NMR (400 MHz, CDCl₃): δ = 7.31 (m, 5H), 7.06 (m, 1H), 6.50 (m, 3H), 4.32 (s, 2H), 3.95 (s, 1H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 148.29, 139.63, 139.09, 129.20, 128.66, 127.58, 127.24, 118.58, 113.68, 110.02, 48.41, 21.68.

Synthesis of N-benzyl-4-methylaniline¹

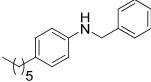


Benzyl alcohol (162 mg, 1.5 mmol), 4-methylaniline (107 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 4 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.15). Following the procedure above, N-benzyl-4-methylaniline (yellow liquid) was obtained (183 mg, Isolated yield = 93%). ¹H NMR (400 MHz, CDCl₃): δ = 7.29 (m, 5H), 6.98 (d, 2H), 6.56 (d, 2H), 4.30 (s, 2H), 4.01 (s, 1H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 145.89, 139.66, 129.78, 128.63, 127.55, 127.19, 126.85, 113.09, 48.72, 20.43.

Synthesis of N-benzyl-3-ethylaniline³

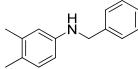

Benzyl alcohol (162 mg, 1.5 mmol), 3-ethylaniline (121 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.10). Following the procedure above, N-benzyl-4-methylaniline (light yellow liquid) was obtained (177 mg, Isolated yield = 84%).¹H NMR (400 MHz, CDCl₃): δ = 7.30 (m, 5H), 7.09 (m, 1H), 6.51 (m, 3H), 4.30 (s, 1H), 3.95 (s, 1H), 2.56 (q, 2H), 1.20 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 148.35, 145.51, 139.64, 129.27, 128.67, 127.65, 127.26, 117.40, 112.63, 110.22, 48.50, 29.09, 15.59. Synthesis ofN-benzyl-4-butylaniline⁴

Benzyl alcohol (162 mg, 1.5 mmol), 4-butylaniline (149 mg, 1 mmol),

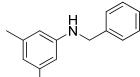

50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.10). Following the procedure above, N-benzyl-4-methylaniline (yellow liquid) was obtained (203 mg, Isolated yield = 85%).¹H NMR (400 MHz, CDCl₃) δ = 7.29 (m, 5H), 6.98 (d, 2H), 6.57 (d, 2H), 4.29 (s, 2H), 3.89 (s, 1H), 2.49 (t, 2H), 1.55 (m, 2H), 1.32 (m, 2H), 0.91 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 146.16, 139.73, 132.10, 129.17, 128.63, 127.60, 127.20, 112.94, 48.72, 34.77, 34.05, 22.39, 14.04.

Synthesis of N-benzyl-4-(tert-butyl)aniline⁵

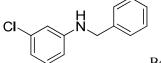
Benzyl alcohol (162 mg, 1.5 mmol), 4-(tert-butyl)aniline (149 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.10). Following the procedure above, N-benzyl-4-methylaniline (yellow liquid) was obtained (221 mg, Isolated yield = 92%).¹H NMR (400 MHz, CDCl₃): δ = 7.28 (m, 7H), 6.60 (m, 2H), 4.30 (s, 2H), 3.93 (s, 1H), 1.28 (s, 9H).¹³C NMR (101 MHz, CDCl₃): δ = 145.92, 140.39, 139.76, 128.64, 127.61, 127.22, 126.07, 112.62, 48.69, 33.91, 31.60.


Synthesis of N-benzyl-4-hexylaniline

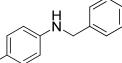
Benzyl alcohol (162 mg, 1.5 mmol), 4-hexylaniline (177 mg, 1 mmol),


50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.10). Following the procedure above, N-benzyl-4-methylaniline (light yellow liquid) was obtained (234 mg, Isolated yield = 88%).¹H NMR (400 MHz, CDCl₃): δ = 7.31 (m, 5H), 6.98 (d, 2H), 6.57 (d, 2H), 4.29 (s, 2H), 3.89 (s, 1H), 2.48 (t, 2H), 1.53 (m, 2H), 1.28 (m, 6H), 0.87 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 146.16, 139.73, 132.15, 129.15, 128.63, 127.60, 127.20, 112.94, 48.72, 35.10, 31.86, 31.84, 29.05, 22.69, 14.17. HR-MS calculated for 268.2065, found 268.2060 (C19H26N).

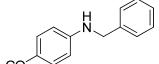
Synthesis of N-benzyl-3,4-dimethylaniline⁶


Benzyl alcohol (162 mg, 1.5 mmol), 3, 4-dimethylaniline (121 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.10). Following the procedure above, N-benzyl-4-methylaniline (yellow liquid) was obtained (206 mg, Isolated yield = 98%).¹H NMR (400 MHz, CDCl₃): δ = 7.30 (m, 5H), 6.92 (d, 1H), 6.46 (s, 1H), 6.39 (d, 1H), 4.28 (s, 2H), 3.81 (s, 1H), 2.18 (s, 3H), 2.14 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 146.46, 139.87, 137.37, 130.36, 128.64, 127.57, 127.18, 125.61, 114.80, 110.32, 48.71, 20.11, 18.76.

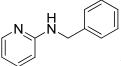
Synthesis of N-benzyl-3,5-dimethylaniline²


Benzyl alcohol (162 mg, 1.5 mmol), 3, 5-dimethylaniline (121 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.10). Following the procedure above, N-benzyl-4-methylaniline(light yellow liquid) was obtained (182 mg, Isolated yield = 86%).¹H NMR (400 MHz, CDCl₃): δ = 7.30 (m, 5H), 6.39 (s, 1H), 6.28 (s, 2H), 4.29 (s, 2H), 3.97 (s, 1H), 2.22 (s, 6H).¹³C NMR (101 MHz, CDCl₃): δ = 148.28, 139.65, 138.97, 128.64, 127.62, 127.22, 119.73, 110.88, 48.48, 21.54.

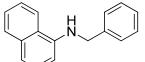
Synthesis of N-benzyl-3-chloroaniline²


Benzyl alcohol (162 mg, 1.5 mmol), 3-chloroaniline (127 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.18). Following the procedure above, N-benzyl-3-chloroaniline(light yellow solid, m.p. 93-94 °C) was obtained (212 mg, Isolated yield = 98%). ¹H NMR (400 MHz, CDCl₃): δ = 7.31(m, 5H), 7.06 (t, 1H), 6.64 (m, 2H), 6.48 (dd, 1H), 4.29 (s, 2H), 4.12 (s, 1H).¹³C NMR (101 MHz, CDCl₃): δ = 149.22, 138.76, 135.06, 130.23, 128.76, 127.50, 127.47, 117.47, 112.55, 111.18, 48.15.

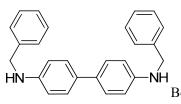
Synthesis of N-benzyl-4-chloroaniline¹


Cl Benzyl alcohol (162 mg, 1.5 mmol), 4-chloroaniline (127 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 4 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.15). Following the procedure above, N-benzyl-4-chloroaniline(yellow liquid) was obtained (200 mg, Isolated yield = 92%). ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (m, 5H), 7.10 (d, 2H), 6.54 (m, 2H), 4.29 (s, 2H), 4.15 (s, 1H).¹³C NMR (101 MHz, CDCl₃): δ = 146.58, 138.90, 129.10, 128.73, 127.47, 127.42, 122.23, 114.03, 48.43.

Synthesis of N-benzyl-4-methoxyaniline⁵

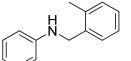

 H_3 CO Benzyl alcohol (162 mg, 1.5 mmol), 4-methoxyaniline (123 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 4 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.08). Following the procedure above, N-benzyl-4-methoxyaniline(yellow solid, m.p. 47-49 °C) was obtained (170 mg, Isolated yield = 80%).¹H NMR (400 MHz, CDCl₃):δ = 7.32 (m, 5H), 6.77 (d, 2H), 6.60 (d, 2H), 4.28 (s, 2H), 3.79 (s, 1H), 3.73 (s, 3H).¹³C NMR (101 MHz, CDCl₃):δ = 152.24, 142.47, 139.71, 128.62, 127.57, 127.19, 114.94, 114.14, 55.84, 49.29.

Synthesis of N-benzylpyridin-2-amine¹

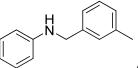


Benzyl alcohol (162 mg, 1.5 mmol), pyridin-2-amine (94 mg, 1 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/3, v/v; Silica Gel: 200-300 mesh; Rf = 0.22). Following the procedure above, N-benzylpyridin-2-amine(light yellow solid, m.p. 94-95 °C) was obtained (180 mg, Isolated yield = 98%). ¹H NMR (400 MHz, CDCl₃): δ =8.10 (d, 1H), 7.33 (m, 6H), 6.59 (m, 1H), 6.37 (d, 1H), 4.94 (s, 1H), 4.51 (d, 2H).¹³C NMR (101 MHz, CDCl₃): δ = 158.63, 148.16, 139.18, 137.52, 128.66, 127.42, 127.26, 113.18, 106.85, 46.35.

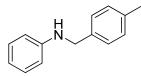
Synthesis of N-benzylnaphthalen-2-amine¹


Benzyl alcohol (162 mg, 1.5 mmol), naphthalen-1-amine (143 mg, 1 mmol), 50 mg cat-9 and 1 mmol KOH were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 4 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/80, v/v; Silica Gel: 200-300 mesh; Rf = 0.15). Following the procedure above, N-benzylnaphthalen-1-amine (light yellow solid, m.p. 65-68 °C) was obtained (221 mg, Isolated yield = 95%). ¹H NMR (400 MHz, CDCl₃): δ = 7.81 (t, 2H), 7.35 (m, 9H), 6.63 (d, 1H), 4.72 (s, 1H), 4.49 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 139.08, 134.33, 128.76, 128.74, 127.80, 127.45, 126.63, 125.78, 124.81, 123.43, 119.93, 117.74, 104.87, 48.69. Synthesis of N⁴, N⁴-dibenzyl-[1,1'-biphenyl]-4,4'-diamine²

Benzyl alcohol (162 mg, 1.5 mmol), benzidine (92 mg, 0.5 mmol),

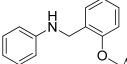

50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purifiedby filtration and removing toluene Rot-Vap. Following the on а the procedure above, N⁴,N⁴'-dibenzyl-[1,1'-biphenyl]-4,4'-diamine(light yellow solid, m.p. 178-179 °C) was obtained (159 mg, Isolated yield = 87%).¹H NMR (400 MHz, CDCl₃): $\delta = 7.32$ (m, 14H), 6.67 (d, 4H), 4.35 (s, 4H), 4.04 (s, 2H).¹³C NMR (101 MHz, CDCl₃): $\delta = 146.74$, 139.53, 130.92, 128.67, 127.54, 127.26, 127.21, 113.20, 48.51.

Synthesis of N-(2-methylbenzyl)aniline²

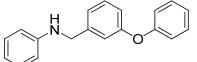

Aniline (93 mg, 1 mmol), 2-methylbenzyl alcohol (183 mg, 1.5 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 4 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.20). Following the procedure above, N-(2-methylbenzyl)aniline (light yellow solid, m.p. 29-31 °C) was obtained (190 mg, Isolated yield = 96%). ¹H NMR (400 MHz, CDCl₃): δ = 7.35 (dd, 1H), 7.19 (m, 5H), 6.73 (m, 1H), 6.64 (d, 2H), 4.27 (s, 2H), 3.85 (s, 1H), 2.37 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 148.31, 137.02, 136.38, 130.44, 129.30, 128.29, 127.45, 126.18, 117.50, 112.73, 46.42, 18.95.

Synthesis ofN-(3-methylbenzyl)aniline¹

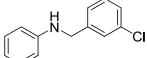
Aniline (93 mg, 1 mmol), 3-methylbenzyl alcohol (183 mg, 1.5 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 4 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.16). Following the procedure above, N-(3-methylbenzyl)aniline (yellow liquid) was obtained (190 mg, Isolated yield = 96%). ¹H NMR (400 MHz, CDCl₃): δ = 7.17 (m, 6H), 6.68 (m, 3H), 4.27 (s, 2H), 4.03 (s, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 148.24, 139.38, 138.34, 129.29, 128.57, 128.34, 128.04, 124.64, 117.59, 112.90, 48.42, 21.46.


Synthesis ofN-(4-methylbenzyl)aniline²

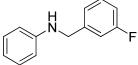
Aniline (93 mg, 1 mmol), 4-methylbenzyl alcohol (183 mg, 1.5 mmol),


50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 4 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.15). Following the procedure above, N-(4-methylbenzyl)aniline (light yellow solid, m.p. 62-64 °C) was obtained (155 mg, Isolated yield = 84%). ¹H NMR (400 MHz, CDCl₃): δ = 7.19 (m, 6H), 6.68 (m, 3H), 4.27 (s, 2H), 3.97 (s, 1H), 2.34 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 148.24, 136.90, 136.38, 129.33, 129.27, 127.55, 117.52, 112.87, 48.12, 21.12.

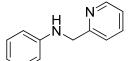
Synthesis of N-(2-methoxybenzyl)aniline⁷


Aniline (93 mg, 1 mmol), 2-methoxybenzyl alcohol (207 mg, 1.5 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/150, v/v; Silica Gel: 200-300 mesh; Rf = 0.08). Following the procedure above, N-(2-methoxybenzyl)aniline (white solid, m.p. 93-94 °C) was obtained (177 mg, Isolated yield = 83%).¹H NMR (400 MHz, CDCl₃): δ = 7.21 (m, 4H), 6.90 (dd, 2H), 6.67 (dd, 3H), 4.33 (s, 2H), 4.12 (s, 1H), 3.85 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 157.43, 148.45, 129.19, 128.93, 128.32, 127.38, 120.55, 117.36, 113.09, 110.28, 55.33, 43.49.

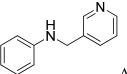
Synthesis of N-(3-phenoxybenzyl)aniline⁸


Aniline (93 mg, 1 mmol), (3-phenoxyphenyl)methanol (300 mg, 1.5 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/150, v/v; Silica Gel: 200-300 mesh; Rf= 0.08). Following the procedure above, N-(3-chlorobenzyl) aniline (light yellow solid, m.p. 58-60 °C) was obtained (266 mg, Isolated yield = 97%).¹H NMR (400 MHz, CDCl₃): δ = 7.31 (m, 3H), 7.14 (m, 4H), 7.01 (dd, 3H), 6.90 (d, 1H), 6.72 (t, 1H), 6.61 (d, 2H), 4.30 (s, 2H), 4.05 (s, 1H).¹³C NMR (101 MHz, CDCl₃): δ = 157.62, 157.08, 147.96, 141.68, 129.94, 129.78, 129.28, 123.33, 122.17, 118.96, 117.80, 117.70, 117.51, 112.93, 48.08.

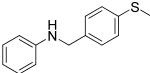
Synthesis of N-(3-chlorobenzyl)aniline²


Aniline (93 mg, 1 mmol), (3-chlorophenyl)methanol (213 mg, 1.5 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/100, v/v; Silica Gel: 200-300 mesh; Rf = 0.08). Following the procedure above, N-(3-chlorobenzyl) aniline (light yellow liquid) was obtained (206 mg, Isolated yield = 95%).¹H NMR (400 MHz, CDCl₃): δ = 7.23 (m, 6H), 6.67 (m, 3H), 4.30 (s, 2H), 4.06 (s, 1H).¹³C NMR (101 MHz, CDCl₃): δ = 147.81, 141.77, 134.56, 129.92, 129.34, 127.45, 127.40, 125.44, 117.90, 112.93, 47.81.

Synthesis ofN-(3-fluorobenzyl)aniline⁹


Aniline (93 mg, 1 mmol), (3-fluorophenyl)methanol (189 mg, 1.5 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/150, v/v; Silica Gel: 200-300 mesh; Rf = 0.13). Following the procedure above, N-(3-fluorobenzyl) aniline (light yellow liquid) was obtained (129 mg, Isolated yield = 64%).¹H NMR (400 MHz, CDCl₃): δ = 7.20 (m, 5H), 6.94 (td, J = 8.4, 2.2 Hz, 1H), 6.72 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 7.7 Hz, 2H), 4.32 (s, 2H), 4.08 (s, 1H).¹³C NMR (101 MHz, CDCl₃): δ = 164.41, 161.96, 147.84, 142.41, 142.34, 130.18, 130.10, 129.34, 122.82, 122.80, 117.87, 114.30, 114.18, 114.09, 113.97, 112.93, 47.82.

Synthesis of N-(pyridin-2-ylmethyl)aniline²


Aniline (93 mg, 1 mmol), pyridin-2-ylmethanol (164 mg, 1.5 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/2, v/v; Silica Gel: 200-300 mesh; Rf = 0.28). Following the procedure above, N-(pyridin-2-ylmethyl)aniline (yellow solid, m.p. 50-51 °C) was obtained (180 mg, Isolated yield = 98%).¹H NMR (400 MHz, CDCl₃): δ = 8.59 (d, 1H), 7.64 (t, 1H), 7.35 (t, 1H), 7.18 (t, 3H), 6.72 (t, 1H), 6.67 (d, 2H), 4.63 (s, 1H), 4.47 (s, 2H).¹³C NMR (101 MHz, CDCl₃): δ = 158.55, 149.21, 147.91, 136.68, 129.27, 122.12, 121.63, 117.63, 113.08, 49.31.

Synthesis of N-(pyridin-3-ylmethyl)aniline²

Aniline (93 mg, 1 mmol), pyridin-3-ylmethanol (164 mg, 1.5 mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/2, v/v; Silica Gel: 200-300 mesh; Rf = 0.15). Following the procedure above, N-(pyridin-3-ylmethyl)aniline (light yellow solid, m.p. 93-95 °C) was obtained (140 mg, Isolated yield = 76%). ¹H NMR (400 MHz, CDCl₃): δ = 8.56 (m, 2H), 7.70 (d, 1H), 7.22 (m, 3H), 6.70 (m, 3H), 4.36 (s, 2H), 4.05 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 149.19, 148.74, 147.64, 135.13, 134.94, 129.37, 123.57, 118.08, 112.98, 45.84.

Synthesis of N-(4-methylthiobenzyl) .aniline¹⁰

Aniline (93 mg, 1 mmol), 4-methylthiobenzyl alcohol (231 mg, 1.5

mmol), 50 mg cat-9, 0.5 mmol KOH and 2 ml toluene were added into a 15 mL reaction tube and reacted at 150 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (ethyl acetate / petroleum ether = 1/150, v/v; Silica Gel: 200-300 mesh; Rf = 0.07). Following the procedure above,N-(4-methylthiobenzyl)aniline (light brown solid, m.p. 34-36 °C) was obtained (218 mg, Isolated yield = 95%).¹H NMR (400 MHz, CDCl₃): δ = 7.21 (m, 6H), 6.68 (m, 3H), 4.28 (s, 2H), 4.05 (s, 1H), 2.47 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 148.03, 137.21, 136.42, 129.30, 128.06, 127.04, 117.70, 112.93, 47.91, 16.07.

Supplementary References

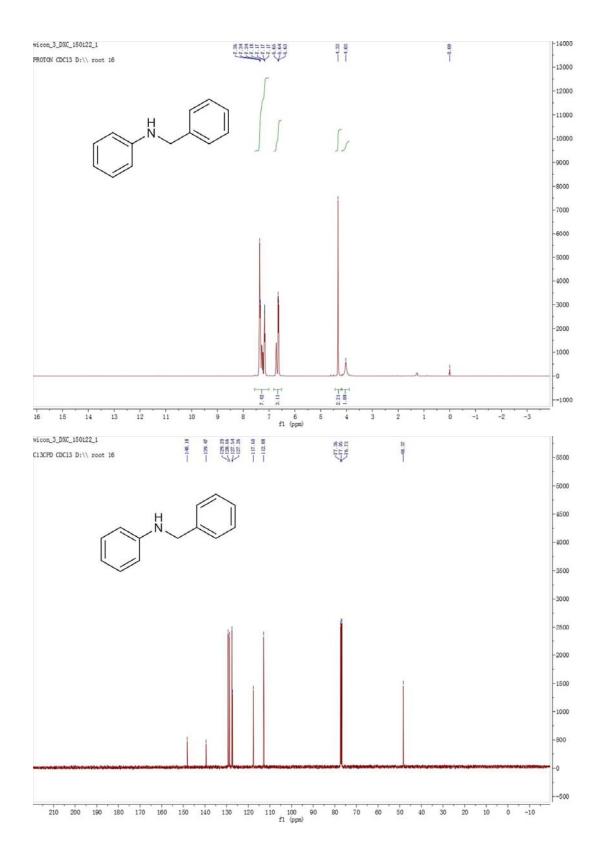
(1). Cui, X.; Zhang, Y.; Shi, F.; Deng, Y. Chem. Eur. J.2011, 17, 1021-1028.

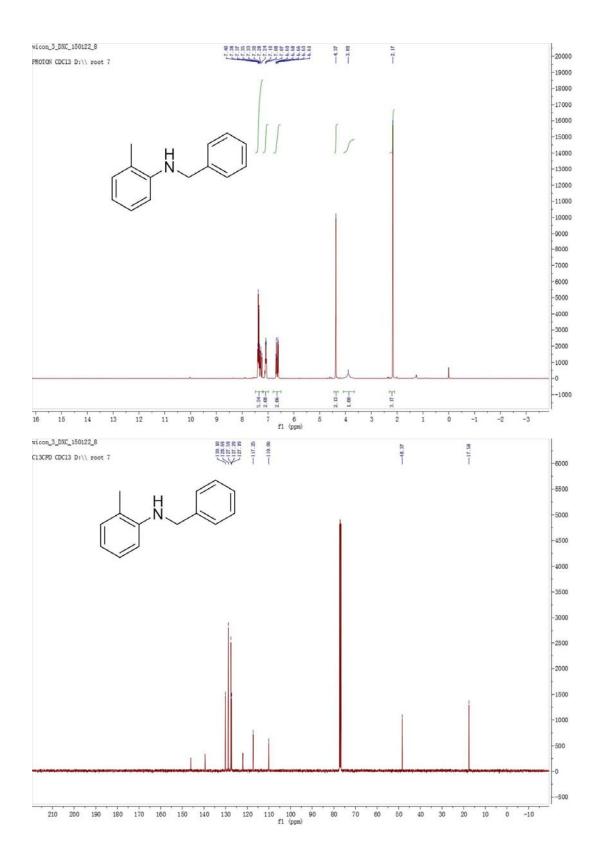
(2). He, W.; Wang, L.; Sun, C.; Wu, K.; He, S.; Chen, J.; Wu, P.; Yu, Z. *Chem. Eur. J.***2011**, *17*, 13308-13317.

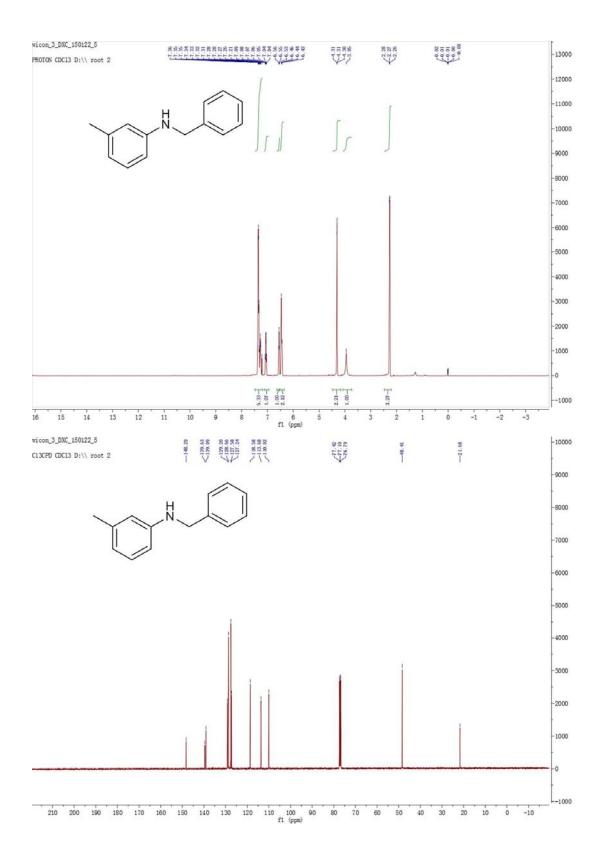
(3). Ling, X; Xiong, Y; Huang, R; Zhang, X; Zhang, S; Chen, C.J. Org. Chem. 2013, 78, 5218–5226.

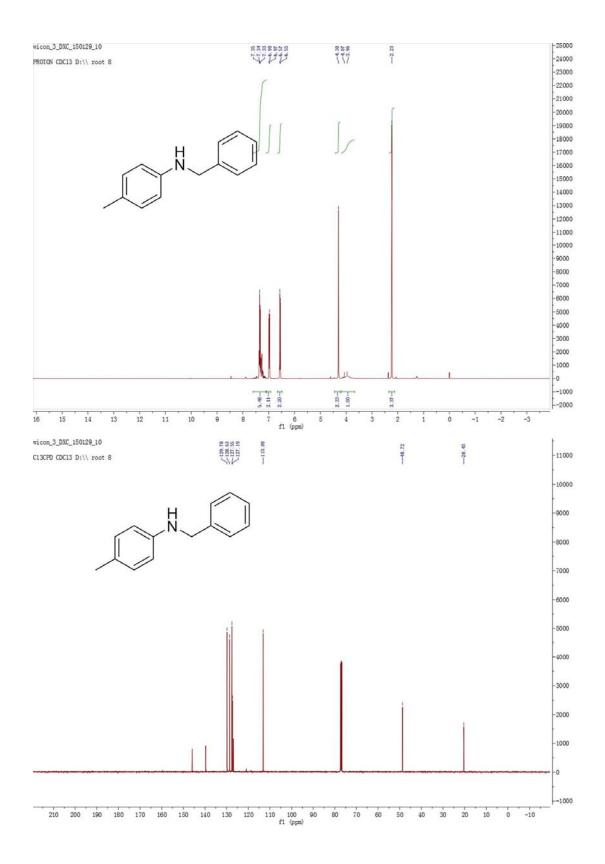
(4). US Patent 2003/207939 A1, 2003.

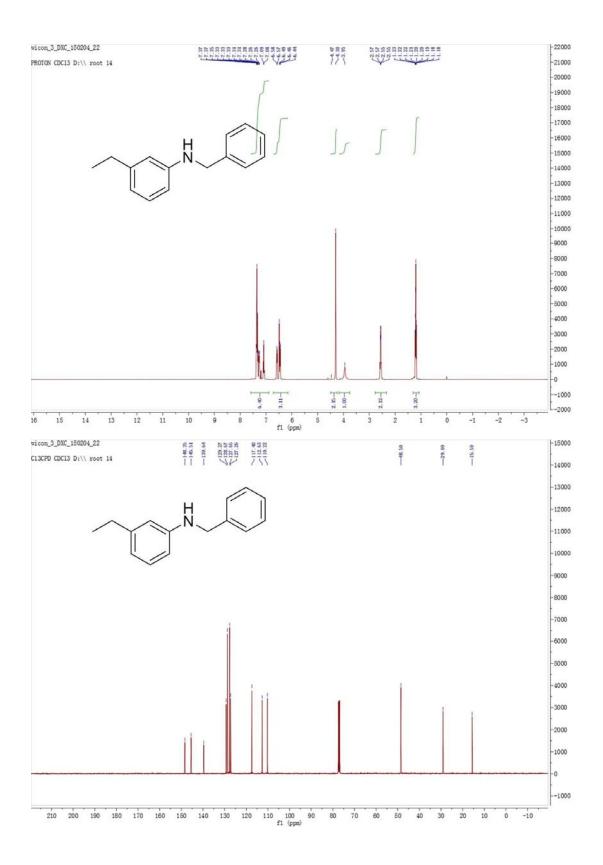
(5). Anderson, K; Mendez-Perez, M; Priego, J; Buchwald, S.J. Org. Chem. 2003, 68, 9563-9573.


(6). Warner, P; Bardos, T. J. Med. Chem. 1970, 13, 407-410.


(7). Zhang, Y; Qi, X; Cui, X; Shi, F; Deng, Y. Tetrahedron Lett. 2011, 52, 1334 - 1338.


(8). Popov, Y; Korchagina, T; Chicherina, G, Ermakova, T. Russ. J. Org. Chem. 2004, 40, 685-689.


(9). Santoro, F.; Psaro, R.; Ravasio, N.; Zaccheria, F. RSC Adv.2014, 4, 2596-2600.


(10). Sousa, S.; Fernandes, A. Adv. Synth. Catal.2010, 352, 2218-2226.

