Effects of V2O5 Nanowires on the Performances of Li2MnSiO4 as Cathode Material

for Lithium-ion Batteries

Hai Zhu^a, Xiaoling Ma^{b*}, Ling Zan^a, Youxiang Zhang^{a*}

a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072,

P. R. China;

b College of Chemistry and Life Science, Hubei University of Education, Wuhan,

430205, China.

* Corresponding author. Email: <u>yxzhang04@whu.edu.cn; maxiaoling@hue.edu.cn</u>

Fig. 1S The SEM (a) and TEM (b) images of the Li_2MnSiO_4/C composite.

Fig. 2S The cyclic voltammograms (CV) curves of the LMS/C/V₂O₅ performed at a scan rate of 0.1 mV s⁻¹ between 1.5 and 4.8 V (vs. Li⁺/Li).

Fig. 3S The charge-discharge profiles of the V_2O_5 nanowires at a rate of 16 mA g⁻¹ in a voltage window of 1.5-4.8 V (vs. Li⁺/Li) as cathode materials for lithium ion batteries.