Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting information

Facile synthesis of 2,2'-dinitrosubstituted biaryls through Cu-catalyzed ligand-free

decarboxylative homocoupling of ortho-nitrobenzonic acids

Zhengjiang Fu, Zhaojie Li, Qiheng Xiong, and Hu Cai*

College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China

E-mail: <u>caihu@ncu.edu.cn</u>

TABLE OF CONTENTS

Contents	Page Number
1) General considerations and experimental procedures	S2 – S6
2) References	S6
3) ¹ H, ¹³ C and ¹⁹ F NMR spectra	S7 – S19

General considerations. The Reagents used for experiments were commercially available and were used as received unless otherwise noted. DMSO were distilled from CaH₂ under reduced pressure and stored under nitrogen. All Reactions were performed under nitrogen with the strict exclusion of dioxygen and moisture using Schlenk techniques. Column chromatography was performed on silica gel 300-400 mesh. The yields reported are the isolated yields and the average of two runs. ¹H, ¹³C and ¹⁹F NMR spectra were recorded at 400, 100 and 377 MHz with CDCl₃ as solvent respectively, however, considering the solubility of **2g** in CDCl₃, its ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz with (CD₃)₂SO as solvent. All coupling constants (*J* values) were reported in Hertz (Hz). Except **2g**, all compounds' HRMS were performed by Shanghai Mass Spectrometry Centre, Shanghai Institute of Organic Chemistry, Chinese Academic of Sciences. **2g**'s Elemental analyses were performed by Center of Analysis and Testing of Nanchang University.

General procedure for Cu-catalyzed decarboxylative homocoupling of *ortho*-nitrobenzonic acids. An oven-dried Schlenk tube equipped with a stir bar was charged with aryl carboxylic acid (0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The tube was fitted with a rubber septum, and then it was evacuated and refilled with nitrogen three times. Under nitrogen, DMSO (2 mL) was added via syringe. The rubber septum was replaced with a Teflon screwcap under nitrogen flow. With stirring, the reaction mixtures were heated at 140 °C for the indicated amount of time (unless otherwise specified), and then cooled down to room temperature. The resultant mixture was filtered through a short plug of silica gel and then concentrated in vacuo. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

4,4'-dichloro-2,2'-dinitrobiphenyl (2a). Procedure was followed using 4-chloro-2-nitrobenzoic acid (40.3 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (1% ether in hexane) to afford 22.6 mg (72%) of the product as a yellow solid. Exhibited spectral data in accordance with previous

report.¹¹H NMR (400 MHz, CDCl₃): δ 8.23 (s, 2 H), 7.68 (d, *J* = 8.0 Hz, 2 H), 7.24 (d, *J* = 8.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 147.4, 135.5, 133.7, 131.9, 131.5, 125.2.

5,5'-dichloro-2,2'-dinitrobiphenyl (2b). Procedure was followed using 5-chloro-2-nitrobenzoic acid (40.3 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (1% ether in hexane) to afford 17.9 mg (57%) of the product as a yellow solid. Exhibited spectral data in accordance with previous report.^{1 1}H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.8 Hz, 2 H), 7.52 (dd, *J* = 8.8, 1.5 Hz, 2 H), 7.23 (d, *J* = 1.8 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 145.1, 140.2, 134.8, 130.6, 129.6, 126.4.

4,4'-difluoro-2,2'-dinitrobiphenyl (2c). Procedure was followed using 4-fluoro-2-nitrobenzoic acid (37.0 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (1% ether in hexane) to afford 10.1 mg (36%) of the product as a yellow solid. Exhibited spectral data in accordance with previous report.² ¹H NMR (400 MHz, CDCl₃): δ 7.96 (dd, *J* = 8.3, 2.6 Hz, 2 H), 7.46 - 7.41(m, 2 H), 7.31 - 7.26 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 160.7, 132.6 (d, *J* = 8.1 Hz), 129.1 (d, *J* = 4.1 Hz), 121.9 (d, *J* = 21.2 Hz), 112.8 (d, *J* = 27.3 Hz). ¹⁹F NMR (377 MHz, CDCl₃): δ -108.8 - -108.9 (m).

5,5'-difluoro-2,2'-dinitrobiphenyl (2d). Procedure was followed using 5-fluoro-2-nitrobenzoic acid (37.0 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (1% ether in hexane) to afford 17.5 mg (63%) of the product as a yellow solid. Exhibited spectral data in accordance with previous report.² ¹H NMR (400 MHz, CDCl₃): δ 8.33 - 8.29 (m, 2 H), 7.25 - 7.31 (m, 2 H), 7.01 - 6.99 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 163.5, 136.3, 127.9 (d, *J* = 10.1 Hz), 117.8 (d, *J* = 24.3 Hz), 116.4 (d, *J* = 23.2 Hz). ¹⁹F NMR (377 MHz, CDCl₃): δ -105.0 - -105.1 (m). HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₁₂H₆F₂N₂O₄ 280.0296; Found 280.0301.

4,4',5,5'-tetrafluoro-2,2'-dinitrobiphenyl (2e). Procedure was followed using 4,5-difluoro-2nitrobenzoic acid (40.6 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (1.5% ether in hexane) to afford 10.0 mg (32%) of the product as a yellow solid. Exhibited spectral data in accordance with previous report.² ¹H NMR (400 MHz, CDCl₃): δ 8.21 - 8.17 (m, 2 H), 7.17 - 7.13 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 154.4 (d, *J*=13.1 Hz), 151.8 - 150.8 (m), 150.9 (d, *J*=13.1 Hz), 148.3 (d, *J* = 13.1 Hz), 119.6 (d, *J* = 20.2 Hz), 115.8 - 115.6 (m), 110.0. ¹⁹F NMR (377 MHz, CDCl₃): δ -125.4 - 125.5 (m), -131.2 - -131.3 (m). HRMS (MALDI-TOF) m/z: [M]⁺ Calcd for C₁₂H₄F₄N₂O₄ 316.0107; Found 316.0102.

2,2'-dinitro-4,4'-bis(trifluoromethyl)biphenyl (2f). Procedure was followed using 2-nitro-4-(trifluoromethyl)benzoic acid (47.0 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (2% ether in hexane) to afford 23.7 mg (62%) of the product as a yellow solid. Exhibited spectral data in accordance with previous report.³ ¹H NMR (400 MHz, CDCl₃): δ 8.56 (s, 2 H), 8.00 (d, *J* = 8.0 Hz, 2 H), 7.47 (d, *J* = 8.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 136.6, 132.4, 131.5 - 131.4 (m), 130.4 - 130.2 (m), 123.9, 122.5 - 122.4 (m), 121.2. ¹⁹F NMR (377 MHz, CDCl₃): δ -63.01 (s).

2,2'-dinitro-4,4'-bis(methylsulfonyl)biphenyl (**2g).** Procedure was followed using 4methylsulfonyl-2-nitrobenzoic acid (49.0 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (50% ether in hexane) to afford 16.6 mg (42%) of the product as a yellow solid. ¹H NMR (400 MHz, (CD₃)₂SO): δ 8.76 (d, *J* = 1.7 Hz, 2 H), 8.42 (dd, *J* = 1.6 ,8.1 Hz, 2 H), 7.88 (d, *J* = 8.0 Hz, 2 H), 3.47 (s, 6 H). ¹³C NMR (100 MHz, (CD₃)₂SO): δ 147.0, 142.7, 137.4, 133.1, 132.7, 124.0, 43.4. Anal. Calcd. for C₁₄H₁₂N₂O₈S₂: C, 42.00; H, 3.02. Found: C, 42.11; H, 3.08. **2,2'-dinitrobiphenyl (2h).** Procedure was followed using 2-nitrobenzoic acid (33.4 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (3% ether in hexane) to afford 13.0 mg (53%) of the product as a yellow solid. Exhibited spectral data in accordance with previous report.⁴ ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, *J* = 8.0Hz, 2 H), 7.69 (t, *J* = 8.0Hz, 2 H), 7.60 (t, *J* = 8.0 Hz, 2 H), 7.30 (d, *J* = 8.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 134.2, 133.4, 130.9, 129.1, 124.8.

4,4'-dimethyl-2,2'-dinitrobiphenyl (2i). Procedure was followed using 4-methyl-2-nitrobenzoic acid (36.2 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (5% ether in hexane) to afford 15.9 mg (58%) of the product as a yellow solid. Exhibited spectral data in accordance with previous report.⁴ Exhibited spectral data in accordance with previous report.³ ¹H NMR (400 MHz, CDCl₃): δ 8.00 (s, 2 H), 7.46 (d, *J* = 8.0 Hz, 2 H), 7.15 (d, *J* = 8.0 Hz, 2 H), 2.51 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 139.6, 134.0, 130.9, 125.1, 21.0.

4,4'-dimethoxy-2,2'-dinitrobiphenyl (2k). Procedure was followed using 4-methoxy-2-nitrobenzoic acid (39.4 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (8% ether in hexane) to afford 10.2 mg (34%) of the product as a yellow solid. Exhibited spectral data in accordance with previous report.⁴ Exhibited spectral data in accordance with previous report.⁴ Exhibited spectral data in accordance with previous report.⁴ 1H NMR (400 MHz, CDCl₃): δ 7.68 (s, 2 H), 7.21 - 7.16 (m, 4 H), 3.93 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 148.2, 132.2, 125.7, 119.7, 109.5, 56.0.

5,5'-dimethoxy-2,2'-dinitrobiphenyl (2l). Procedure was followed using 5-methoxy-2-nitrobenzoic acid (39.4 mg, 0.2 mmol), CuI (11.4 mg, 0.06 mmol, 30 mol%) and 4 Å molecular sieves (MS). The reaction mixtures were purified by flash column chromatography on silica gel (25% ether in hexane) to

afford 19.7 mg (65%) of the product as a yellow solid. Exhibited spectral data in accordance with previous report.⁵ Exhibited spectral data in accordance with previous report.⁵ ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, *J* = 8.0 Hz, 2 H), 7.02-6.99 (m, 2 H), 6.71 (d, *J* = 2.6 Hz, 2 H), 3.90 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 163.3, 140.1, 137.4, 127.5, 115.7, 113.3, 56.1.

References

- 1. S. Tasler, J. Mies and M. Lang, Adv. Synth. Catal., 2007, 349, 2286-2300.
- M. Protiva, J. Jílek, M. Rajšner, J. Pomykáček, M. Ryska, J. Holubek, E. Svátek and J. Metyšová, Collect. Czech. Chem. Commun., 1986, 51, 698-722.
- 3. H.-R. Bjørsvik, R. R. González and L. Liguori, J. Org. Chem., 2004, 69, 7720-7727.
- 4. J. Cornella, H. Lahlali and I. Larrosa, Chem. Commun., 2010, 46, 8276-8278.
- 5. Y. Zhang, H. Wei and W. Zhang, Tetrahedron, 2009, 65, 1281-1286.

