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1 Pharmacophore Modeling

1.1 Pharmacophore Training Set
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1.2 Pharmacophore Positive Control Test Set
TableS1. Pharmacophore Positive Control Test Set
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Compound Activity[ref] Compound Activity[ref]
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Compound Activity[ref] Compound Activity[ref]
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Compound Activity[ref] Compound Activity[ref]
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Compound Activity[ref] Compound Activity[ref]
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Compound Activity[ref] Compound Activity[ref]
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Compound Activity[ref] Compound Activity[ref]
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1.3 Pharmacophore Negative control Test Set
TableS2. Pharmacophore Negative Control Test Set
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[Ref] Compound [Ref] Compound
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C C
O

C
H

C
H

OCH3

OH [46]
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[Ref] Compound [Ref] Compound
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[Ref] Compound [Ref] Compound
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[Ref] Compound [Ref] Compound
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O
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O
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[Ref] Compound [Ref] Compound
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O
O
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O
O
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S

O O

O F F

FF

[60] NN
S

O O

O O

O
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N
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H

HO [61]

O
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HO

O

O

O

O
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O

O

O

O

OH

HOHO

HO

1.4 Methodology

A database containing the training set (Figure S1) was prepared using MOE software with 
known inhibitors. The compounds were then minimized using the MMFF force field to an 
energy gradient <0.00001 to create a 3D structural database.

Different pharmacophoric schemes were tested in order to pursuit the most representative 
features to be able to overlay active molecules while discriminating actives from inactives. This 
was performed by varying the training set (different groups of molecules from the training set 
at Figure S1 were assayed for alignment, Table S3)   and the pharmacophoric model generation 
was performed using different alignment methodologies and pharmacophoric schemes (Table 
S3). Validation was performed against a test set containing structurally diverse HNE inhibitors 
with activities bellow 5 µM (n=106, positive control, Table S1) and a group of diverse 
molecules that when tested against HNE showed no inhibitory activity (n=99, negative control, 
Table S2).

Different pharmacophoric models using different annotation schemes were generated using 
available tools at MOE package (Table S3), with default parameters with maximum query 
feature number defined to 5. 
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A short description of the tools applied is given bellow:

1. Pharmacophoric Elucidator using Unified or PCHD annotation schemes

Pharmacophore Elucidator (PE) generates a collection of pharmacophoric queries from a 
collection of active compounds against a particular biological target so that feature geometries 
common to many of the actives will contain information related to the important interactions 
between the bound conformations of the actives and the receptor. Pharmacophore 
Elucidation accepts as input a collection of N molecules each with Ci conformations. A 
conformational search and import was performed in MOE to create a second database of HNE 
inhibitors that retained 100 of the lowest conformations for each inhibitor. 

Pharmacophore Elucidation generates pharmacophore queries each of which matches at 
least n active molecules. Typically, and in our assays, n is 90% of the training set that contained 
only actives as these queries with a coverage of n are said to be popular. For each query, the 5 
top scored pharmacophores were evaluated against the test set, and for all the cases the 
higher scored pharmacophore was the one that presented best results which are given in 
Table S3.

Different annotation schemes were used to generate the pharmacophoric hypothesis: 

UNI-Unified annotation scheme: This is the most comprehensive and includes all of the 
annotation types defined in MOE (H-bond Donor, H-bond Donor Projection, H-bond Acceptor, 
H-bond Acceptor Projection, π vs. Non-π H-bond Donor/Acceptor, General π vs. Non-π 
Distinctions, Metal Ligator, Metal Ligator Projection, Cation, Anion, NCN+ Bioisostere, COO- 
Bioisostere, Aromatic Centroid, Aromatic Centroid Normal, π-Ring Centroid, π-Ring Centroid 
Normal, Hydrophobe, Hydrophobic Centroid, R-Group Link, R-Group Link Projection).

PCHD- Polar-Charged-Hydrophobic-Direccional scheme includes the following annotation 
points: H-bond Donor, H-bond Donor Projection, H-bond Acceptor, H-bond Acceptor 
Projection, Metal Ligator, Metal Ligator Projection, Cation, Anion, Aromatic Centroid, Aromatic 
Centroid Normal, Hydrophobic Centroid.

2. Flexible Alignment with phamacophoric consensus (FA/PC)

Flexible Alignment (FA) is a stochastic search procedure that simultaneously searches the 
conformation space of a collection of molecules and the space of alignments of those 
molecules. As a result, the method is asymptotically complete. The scoring of alignments is 
based upon a Gaussian density representation of features tuned to reproduce certain X-ray 
crystallographic alignments. MOE default conditions were used for the flexible alignment of 
the training set.

The Pharmacophore Consensus (PC) tool creates a list of suggested features from a set of 
aligned conformations, based on specified consensus parameters. Suggested features were 
converted to query features using MOE default tolerance radius (1.2), consensus score 
threshold (50%) and consensus score mode (weighted conformation).
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Table S3. Pharmacophoric models and respective features, using different training sets and 
different annotation schemes, generated using available tools at MOE package and validated 
against the test set containing positive control (actives) and negative control (inactives). 

% Hits
Training Set Ph Method Features Radius

Control + Control -

1 PE/UNI
2 Hyd
Acc2
Acc2

1.4
1
1

82 37

2 PE/PCHD

Acc 2
Hyd/Aro
Hyd/Aro
Acc2

1
1.4
1.4
1

97 86

3 PE/PCHD

Acc 2
Hyd
Hyd
Acc2

1
1.4
1.4
1

80 45

4 FA/PC

Acc
Acc
Acc2
Acc2
PiN
Hyd/Aro

0.62
0.74
0.66
0.69
0.74
0.75

25 16

S2-S11

5 FA/PC

Acc
Acc
Acc2
Acc2
PiN
Hyd

0.62
0.74
0.66
0.69
0.74
0.75

24 16

6 PE/PCHD

Acc
Hyd/Aro
Hyd/Aro
Acc2

1
1.4
1.4
1

67 42

7 PE/PCHD

Acc
Hyd
Hyd
Acc2

1
1.4
1.4
1

53 18

8 FA/PC

Aro/Hyd/Acc
Acc/Don
Aro/Hyd
Acc2

2
1.7
1.7
1.1

97 87

S1+
S12-S20

9 FA/PC

Acc
Acc
Aro
Acc2

2
1.7
1.7
1.1

91 63

10 PE/PCHD

Acc
Hyd/Aro
Hyd/Aro
Acc2

1
1.4
1.4
1

98 88

S1-S20

11 PE/PCHD

Acc
Hyd
Hyd
Acc2

1
1.4
1.4
1

80 45
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Training Set Ph Method Features Radius
% Hits

Control + Control -

12 PE/PCHD

Acc
Hyd/Aro
Hyd/Aro
Acc2

1
1.4
1.4
1

99 83

S2-S16

13 PE/PCHD

Acc
Hyd
Hyd
Acc2

1
1.4
1.4
1

 80 44

14 PE/PCHD

Acc
Hyd/Aro
Hyd/Aro
Acc2
Acc2

1
1.4
1.4
1
1

100 79

S2-S14

15 PE/PCHD

Acc
Hyd
Hyd
Acc2
Acc2

1
1.4
1.4
1
1

80 34

16 PE/UNI

Hyd
Hyd
Acc2
Acc2

1.4
1.4
1
1

72 30

17 PE/PCHD

Acc
Hyd/Aro
Hyd/Aro
Acc2
Acc2

1
1.4
1.4
1
1

95 66S2-S13

18 PE/PCHD

Acc
Hyd
Hyd
Acc2
Acc2

1
1.4
1.4
1
1

91 38

19 PE/UNI

Aro/PiR
Hyd
Hyd
Acc2

1.4
1.4
1.4
1

63 28

20 PE/UNI
Aro
2 Hyd
Acc2

1.4
1.4
1.4
1

 63  28

21 PE/PCHD

Acc
Hyd/Aro
Hyd/Aro
Acc2

1
1.4
1.4
1

99 85

S2-S12

22 PE/PCHD

Acc
Hyd
Hyd
Acc2

1
1.4
1.4
1

 95  48

PE-pharmacophore elucidator; UNI-Unified; PCHD-Polar-Charged-Hydrophobic-Direccional; FA-Flexible Alignment; 
PC-Parmacophoric consensus; Hyd-hydrophobic; Acc-acceptor; Acc2-projected acceptor; Aro-aromatic; PiN-π-Ring 
Centroid; PiR-π-Ring Centroid.
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After validation of the generated pharmacophoric models, Pharmacophore 18 (Table S3) was 
the one presenting higher discriminating power between active and inactive molecules, 
identifying 91% of the active molecules (positive control) as hits, while retrieves only 38% of 
the inactive molecules (negative control) as false positive hits. Hence, we proceed to the 
optimization of the pharmacophoric model, by applying iterative small changes of the radius 
and distances between the features. The changes applied to the distance between features did 
not led to significant improvement of the discrimination between actives and inactives, while 
changing the feature radius of Acc(F1, Figure S2), Hyd(F2, Figure S2), Hyd (F3, Figure S2), Acc2 
(F4, Figure S2), Acc2 (F5, Figure S2) from 1, 1.4, 1.4, 1, and 1, to 0.5, 1.7, 1.5, 1.2 and 1.4, 
respectively, led to a slight improvement and the percentage of hits identified from the 
positive control (92%), while the false positive hits from the negative control set was slightly 
reduced to 35%. Hence, feature characterization for optimized pharmacophoric model is given 
in Figure S2. 

Figure S2. Optimized Pharmacophore model for HNE inhibition using MOE2012.10 software.
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2 Molecular Docking

Three different 3D structure coordinates of HNE were obtained from the Protein Data Bank, 
PDB codes 3Q76, 3Q77 and 1HNE with X-ray coordinates at 1.86 Å, 2.00 Å and 1.84 Å 
resolution, respectively. To prepare the enzymes for the molecular docking studies, the co-
crystallized inhibitor as well as crystallographic waters included in the PDB structure, were 
removed. Hydrogen atoms were added and the protonation states were correctly assigned 
using the Protonate-3D tool within the Molecular Operating Environment (MOE) 2012.10 
software package, 63 energy was minimized using MMFF94x forcefield. Molecular docking 
studies were then performed using the GoldScore scoring function from GOLD5.1 software 
package64 and each ligand was subjected to 500 docking runs. For complexed structures 3Q77 
and 1HNE the docking methodology was validated using the crystallographic ligands and their 
poses were reproducible with RMSD lower than 0.8 Å.

The docking poses obtained for compound 1 show similar behavior when docked in a non-
complexed HNE structure (Figure S3a) that presents a narrower shape of S1 pocket or when 
docked in HNE crystallographic structures that had co-crystallized inhibitors as 3Q77 (Figure 
S3b) or 1HNE (Figure S3c), indicating that the main contribution for its activity besides the oxo-
β-lactam intrinsic reactivity is based on extra binding to S1 subsite by π-π stacking with 
Phe192, that may promote an induced-fit mechanism when getting close to HNE active-site.
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Figure S3 – Docking poses of compound 1 using different HNE coordinates, PDB 3Q76 (a), PDB 
3Q77 (b) and PDB 1HNE (c).
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3 Chemistry

3.1 General Considerations
Melting points (mp) were recorded on a Kofler camera Bock Monoscope M and are 
uncorrected. 

Proton and carbon nuclear magnetic resonance (1H and 13C NMR) spectra were recorded on a 
Bruker Avance 400 (400 and 100 MHz, respectively). All chemical shifts are quoted on the δ 
scale in ppm using residual solvent peaks as the internal standard. Coupling constants (J) are 
reported in Hz with the following splitting abbreviations: s = singlet, d = doublet, t = triplet, q = 
quartet, dd = double doublet, m = multiplet.

Elemental analysis were performed in a Flash 2000 CHNS-O analyzer (ThermoScientific, UK).

Thin layer chromatography (TLC) was carried out using Merck aluminum backed sheets coated 
with 60 F254 silica gel. Visualization of the silica plates was achieved using a UV lamp (λmax = 
254 nm).

Flash chromatography was made using a Combi Flash RF-200 device from Teledyne Isco with 
RediSepbnormal-phase silica flash columns and using gradients of Hexane/EtOAc.

All reagents were purchased from Aldrich or AlfaAesar and used without further purification.

3.2 Synthesis

TFA, DCM
reflux, 2h

NHN

HNTFA.H2N

O

F

Cl

NCl

HNBocHN

O

NH2

Cl

F

NHN

HNBocHN

O

F

Cl

Cl Cl
OO

Pyridine
r.t., o.n.

Dioxane, TEA,
80ºC, o.n.

6 7

8

NCl

Cl

O

BocHN NH2

Pyridine, DCM
r.t., 2h

N

O

O

NH

O

N

1

HN

F

Cl

5

Scheme 1. Synthetic path for compound 1.
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tert-butyl 2-(3-chloroisonicotinoyl)hydrazinecarboxylate (6)

To a solution of tert-butoxycarbonyl hydrazide (667 mg, 5.05 mmol) in DCM (10 mL) and 
pyridine (0.5 mL) was added 2-chloropyridine-3-carbonyl chloride (1 g, 5.7 mmol) in DCM (10 
mL) and the mixture was stirred at rt for 2h. The reaction mixture was diluted in DCM and 
washed with water, the organics were dried over anhydrous sodium sulfate, filtered and 
concentrated under reduce pressure. The residue was then recrystalized from diethyl ether to 
yield a white powder (1.3 g, 82%). 1H-NMR δ 8.49 (dd, J = 4.6, 1.6 Hz, 1H, Ar), 8.13 (d, J = 7.2 
Hz, 1H, Ar), 7.38 (dd, J = 7.5, 4.8 Hz, 1H, Ar), 6.94 (br s, 1H, NH), 1.51 (s, 9H, Boc).

tert-butyl 2-(3-((2-chloro-6-fluorobenzyl)amino)isonicotinoyl)hydrazinecarboxylate (7)

To a solution of compound 6 (100 mg, 0.37 mmol) in dry dioxane (2 mL) and TEA (2.22 mmol, 
0,31 mL) was added under nitrogen 2-chloro-6-fluorobenzylamine (0.41 mmol, 0,048 mL) and 
the mixture was stirred at 80 °C, overnight. The mixture was washed with diluted HCl and the 
product extracted with 3x EtOAc, the organic were combined, dried over anhydrous sodium 
sulfate, filtered and concentrated under reduced pressure. The residue was purified by column 
chromatography on silica gel using EtOAc/n- hexane gradient as eluent and then recrystalized 
from hexane to yield a white powder (111 mg, 76%,). 1H-NMR δ 8.55 (s, 1H), 8.28 (s, 1H), 8.00 
(s, 1H), 7.32 – 7.17 (m, 3H), 7.04 (d, J = 8.5 Hz, 1H), 6.69 (d, J = 31.2 Hz, 2H), 4.91 (d, J = 3.3 Hz, 
2H), 1.46 (s, 9H).

3-((2-chloro-6-fluorobenzyl)amino)isonicotinohydrazide (8)

Trifluoroacetic acid (3 mL) was added under nitrogen to a solution of compound 7 (300 mg, 
0.76 mmol), in dry DCM (30 mL) and the mixture was refluxed for 2h. The remaining TFA was 
co-evaporated with 3xDCM and the residue was then recrystalized from diethyl ether to yield 
the desired product as colorless crystals (224 mg, 78%). δ 1H NMR (400 MHz, MeOD) 7.58 (d, J 
= 4.8 Hz, 1H), 7.44 (d, J = 6.8 Hz, 1H), 7.33 (d, J = 6.8 Hz, 1H), 6.66 (m, 1H), 6.57 (m, 2H), 6.36 (t, 
J = 7.1 Hz, 1H), 6.05 (t, J = 6.1 Hz, 1H), 4.16 (d, J = 7.2 Hz, 2H), 2.67 (s, 11H).

2-((2-chloro-6-fluorobenzyl)amino)-N-(3,3-diethyl- azetidin-1-yl -2,4-dione)nicotinamide (1)

To a solution of diethylmalonyl dichloride (1.88 mmol, 324 µL) in pyridine (3 mL) under 
nitrogen atmosphere was added a solution compound 8 (1.88 mmol, 768 mg) in pyridine (3 
mL), dropwise, and the reaction proceeded overnight at room temperature. Pyridine was co-
evaporated with 3x toluene. The residue was purified by flash chromatography on silica gel 
using EtOAc/n- hexane gradient as eluent and after  recrystalization from hexane the desired 
product was obtained as colorless crystals (16 mg, 2%) mp 156-158 °C; δ 1H NMR (400 MHz, 
CDCl3) 8.35-8.31 (m, 1H), 8.19 (s, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.23 (m, 2H), 7.05 – 6.99 (m, 1H), 
6.53 (dd, J = 7.8, 4.8 Hz, 1H), 4.89 (d, J = 5.3 Hz, 2H), 1.88 (q, J = 7.5 Hz, 4H), 1.10 (t, J = 7.1 Hz, 
6H). 13C NMR (101 MHz, CDCl3) δ 204.4 (C2,4), 174.2 (C8), 165.5 (Pyr6), 157.4 (Ar2), 153.6 
(Pyr4), 136.0 (Pyr2), 129.4 (Ar6), 125.4 (Ar1), 124.5 (Pyr4), 114.4 (Pyr2), 114.1 (Ar4), 110.9 
(Ar5), 105.4 (Ar3), 66.9 (C3), 36.32 (C10), 23.4 (C5), 9.2 (C6). Calcd. (C20H20ClFN4O3): C, 57.35; H, 
4.81; N, 13.38%. Found: C, 57.14; H, 4.81; N, 13.65%. Crystallographic Data for 1 is presented 
in section 3.4.
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N-(3,3-diethyl-azetidin-1-yl -2,4-dione)benzamide (2)

To a solution of diethylmalonate dichloride (3.67 mmol, 0.63 mL) in pyridine (5 mL) was added 
dropwise a solution of N-benzoyl-hydrazine (0.5 g, 3.67 mmol) in pyridine (5 mL), under stirring 
and nitrogen atmosphere. The reaction was stirred at room temperature overnight. Pyridine 
was co-evaporated with 3x toluene. The resulting residue was dissolved in dichloromethane 
and washed three times with water, the organic phase was dried with anhydrous magnesium 
sulfate and filtered and concentrated under reduced pressure. The obtained residue was 
purified by flash chromatography on silica gel to afford the desired product as a colorless solid 
(0.220 g, 23%) mp 116-119 °C; 1H-NMR (400 MHz, CDCl3), δ(ppm): 1.13 (6H, t, J = 7.1 Hz, 2CH3), 
1.88 (4H, q, J = 7.8 Hz, 2CH2), 7.46 (2H, t, J = 7.7 Hz, Ar), 7.58 (1H, t, J = 7.1 Hz, Ar), 7.78 (2H, d, J 
= 7.1 Hz, Ar), 8.49 (1H, s, NH); 13C-NMR (100 MHz, CDCl3), δ(ppm):  174.1, 165.1, 133.2, 130.0, 
128.9, 127.6, 67.2, 23.6, 9.3.  Calcd. (C14H16N2O3): C, 64.60; H, 6.20; N, 10.76%. Found: C, 65.07; 
H, 6.40; N, 10.51%.

N-(3,3-diethyl-azetidin-1-yl-2 ,4-dione)-4-methylbenzenesulfonamide  (3)

To a solution of dimethylmalonate chloride (3.9 mmol, 0.67 mL) in pyridine (5 mL) under 
stirring and nitrogen atmosphere at 5 °C (ice-water bath) was added dropwise a solution of p-
toluenesulfonyl hydrazine (3.9 mmol, 0.73 g) in pyridine (5 mL). The reaction was stirred at 
room temperature overnight. Pyridine was co-evaporated with 3x toluene. The resulting 
residue was dissolved in dichloromethane and washed three times with water, the organics 
were dried with anhydrous magnesium sulfate and filtered and concentrated under reduced 
pressure. The obtained residue was purified by silica gel chromatography (EtOAc/n-hexane 
(1:3)) to afford the desired product as a colorless solid (10%), mp 129-131 °C; 1H-NMR (DMSO): 
0.85 (6H, t, J = 7.2 Hz, 2CH3), 1.62 (4H, q, J = 7.2 Hz, 2CH2), 2.39 (3H, s, Ar-CH3), 7.45 (2H, d, J = 
7.6 Hz, Ar-H), 7.73 (2H, d, J = 7.6 Hz, Ar-H); 11.45 (1H, s, NH); 13C-NMR (DMSO): 9.2 (2CH3), 21.5 
(CH3), 23.2 (2CH2), 66.3 (Cq), 127.8 and 130.1 (Ar, C2, C3, C5, C6), 136.1 (Cq, Ar-C4), 145.0 (Cq, 
Ar-C1), 173.20 (2Cq C=O).  Crystallographic Data for 3 is presented in section 3.4.

N-(3,3-diethyl-azetidin-1-yl-2 ,4-dione)-N,4-dimethylbenzenesulfonamide (4)

To a solution of diethylmalonyl dichloride (2.6 mmol, 450 µL) in dioxane (20 mL) under 
nitrogen atmosphere was added a solution N-methyl-tosylhydrazine (2.6 mmol, 525 mg) in 
dioxane (20 mL), dropwise, followed by a solution of TEA (985 µL) in dioxane (20 mL). The 
reaction was stirred at room temperature overnight. The reaction mixture was concentrated 
and the obtained residue was purified by flash chromatography on silica gel using EtOAc/n- 
hexane gradient as eluent  and after  recrystalization from hexane the desired product was 
obtained as colorless crystals colorless solid (0.168 g, 21%). 1H-NMR (400 MHz, CDCl3) δ(ppm): 
7.78 (d, J = 8.2 Hz, 2H, Ar), 7.36 (d, J = 8.1 Hz, 2H, Ar), 3.22 (s, 3H, NCH3), 2.46 (s, 3H, Ar-CH3), 
1.76 (q, J = 7.5 Hz, 4H, 2CH2), 1.02 (t, J = 7.5 Hz, 6H, 2CH3). 13C-NMR (100 MHz, CDCl3) δ(ppm): 
172.7, 145.5, 132.9, 130.0, 128.6, 66.4, 38.0, 23.6, 21.8, 9.1. Anal. Calcd. (C15H20N2O4S): C, 
55.54; H, 6.21; N, 8.64%; S, 9.88%. Found: C, 55.38; H, 6.19; N, 8.57%; S, 9.65%.
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3.2 NMR Spectra for compounds 1-4

1H-NMR (400MHz, CDCl3) for compound 1:
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1H-NMR (400MHz, CDCl3) for compound 2:
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13C-NMR (100MHz, CDCl3) for compound 2:
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1H-NMR (400MHz, CDCl3) for compound 3:
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1H-NMR (400MHz, CDCl3) for compound 4:
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3.4 Solid state structural characterization of compounds 1 and 3
Crystallographic Data for compounds 1 and 3 (CCDC 1022848-1022849):

Crystals of 1 and 3 suitable for X-ray diffraction study were mounted with Fomblin© in a 
cryoloop. Data was collected on a Bruker AXS-KAPPA APEX II diffractometer with graphite-
monochromated radiation (Mo K, =0.17073 Å) at 150 K. The X-ray generator was operated 
at 50 kV and 30 mA and the X-ray data collection was monitored by the APEX2 program. All 
data were corrected for Lorentzian, polarization and absorption effects using SAINT65 and 
SADABS66 programs. SIR9767 and SHELXS-9768 were used for structure solution and SHELXL-97 
was applied for full matrix least-squares refinement on F2. These three programs are included 
in the package of programs WINGX-Version 1.80.05.69 Non-hydrogen atoms were refined 
anisotropically. A full-matrix least-squares refinement was used for the non-hydrogen atoms 
with anisotropic thermal parameters. All the hydrogen atoms were inserted in idealized 
positions and allowed to refine in the parent carbon or oxygen atom, except for the hydrogen 
atoms connected to nitrogen that were located from the electron density map and allowed to 
refine.  

Figure S4 – Molecular structure for compound 1

Figure S5 – Molecular structure for compound 3
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Table S4. Crystal Data and Structure Refinement Details for Compounds 1 and 3.

1 3

formula C20H20Cl1F1N4O3 C14H18N2O4S

fw 418.85 310.36

crystal form, color plate, colorless block, colorless

crystal size (mm) 0.20×0.08×0.01 0.2×0.10×0.10

crystal syst. Orthorhombic Orthorhombic

space group Pna21 P212121

a, Å 22.318(4) 6.702(3)

b, Å 10.108(3) 11.902(6)

c, Å 9.029(7) 18.892(4)

Z 4 16

V, Å3 2036.9(17) 1507.0(11)

T, K 298(2) 150(2)

Dc, g cm−3 1.366 1.367

μ(Mo Kα), mm−1 0.225 0.232

  range () 2.72–26.37 2.02–32.22

refl. collected 25820 19864

independent refl. 4092 5265

Rint 0.0397 0.0621

R1
 a, wR2

 b [I  2σ(I)] 0.0812, 0.02212 0.0416, 0.0948

GOF on F2 1.059 1.007

a R1 = ||Fo| – |Fc||/|Fo|. b wR2 = [[w(Fo
2 – Fc

2)2]/[w(Fo
2)2]]1/2
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4 Pharmacological Assays
For all serine proteases (human neutrophil elastase, porcine pancreatic elastase, cathepsin G, 
proteinase 3, thrombin, kallikrein, urokinase, trypsin and chymotrypsin), activity was 
monitored at 25 °C for 30 min at excitation and emission wavelengths of 360 and 460 nm, 
respectively in a microplate reader (FLUOstar Omega, BMG Labtech, Germany). For all 
compounds tested, the concentration of inhibitor that caused 50% inhibition of the enzymatic 
reaction (IC50) was determined by non-linear regression using GraphPad PRISM software. 
Inhibitors stock solutions were prepared in DMSO, and serial dilutions were made in DMSO. 
Assays were performed in triplicate and data presented as the mean and the standard 
deviation.

4.1 Inhibition Assay for human neutrophil elastase 
Fluorometric assays for the human neutrophil elastase (HNE, Merck, Germany) inhibition 
activity were carried out in 200 µL assay buffer (0.1 M HEPES pH 7.5 at 25 °C) containing 20 µL 
of 0.17 μM HNE in assay buffer (stock solution 1.7 μM in 0.05 M acetate buffer, pH 5.5), 155 µL 
of assay buffer and 5 µL of each concentration of tested inhibitors. After 30 min of incubation 
at 25 °C the reaction was initiated by the addition of 20 μl of fluorogenic substrate to final 
concentration 200 µM (MeO-Suc-Ala-Ala-Pro-Val-AMC, Merck, Germany). The Km of this 
substrate of HNE was previously determined to be 185 µM (data not shown). For all assays, 
saturated substrate concentration was used, throughout, in order to obtain linear fluorescence 
curves. Controls were performed using enzyme alone, substrate alone, enzyme with DMSO 
and a positive control (Sivelestat sodium salt hydrate, Sigma Aldrich, UK). 

Figure S6. Inhibition curves for compound 1 and ONO-5046. Prepared using GraphPad 
Software.

4.2 Inhibition Assay for porcine pancreatic elastase 
The inhibition of PPE was assayed by incubation method, 5 μl of inhibitor solution in DMSO 
was incubated at 25 °C with 155 μL of 0.1 M HEPES buffer, pH 7.5, and 20 μL of PPE solution 
(50 μM in 0.1 M HEPES buffer, pH 7.5). After 30min of incubation at 25 °C the reaction was 
initiated by the addition of 20 μL of fluorogenic substrate to final concentration of 200 μM 
(MeO-Suc-Ala-Ala-Pro-Val-AMC, Merck, Germany). Controls were performed using enzyme 
alone, substrate alone and enzyme with DMSO and positive control (Elastase Inhibitor I, # 
324692, CalBiochem). 
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4.3 Inhibition Assay for proteinase 3
Inactivation of proteinase 3 (Calbiochem cat #539483) was studied at 25 °C in 200 μL assay 
buffer (0.1 M HEPES pH 7.5 at 25 °C) containing 70 μL of 65 nM proteinase 3 in assay buffer 
(stock solution 650 nM in 0.05 M acetate buffer, 150 mM NaCl, pH 5.5), 50 μL assay buffer and 
5 μL of each concentration of tested inhibitors. The reaction was initiated by the addition of 75 
μL of 10 mM chromogenic substrate (N-MeOSuc-Ala-Ala-Pro-Val-p-nitroanilide, stock solution 
50 mM in DMSO, Sigma, UK) in assay buffer. Controls were performed using enzyme alone, 
substrate alone, enzyme with DMSO and a positive control. 

4.4 Inhibition Assay for cathepsin G
Inactivation of cathepsin G (Calbiochem cat # 219373) was studied at 25 °C using the progress 
curve method. A Chromogenic 96 well microplate assay for the Cathepsin G, Human 
Neutrophil (Calbiochem, Germany) inhibition activity was carried out in 200 μL assay buffer 
(0.1 M HEPES pH 7.5 at 25 °C) containing 5 μL of each concentration of tested inhibitors, 125 
μL of assay buffer and 20 μL of 680 nM Cathepsin G (680 nM in 0.05 M acetate buffer, pH 5.5). 
After a period of 30 minutes of incubation at 25 °C the reaction was initiated by the addition of 
50 μL of 3.4 mM chromogenic substrate (Suc-Ala-Ala-Pro-Phe-p-nitroanilide, Calbiochem, 
Germany) in assay buffer (stock solution 42.5 mM in DMSO). Controls were performed using 
enzyme alone, substrate alone, enzyme with DMSO and a positive control (Cathepsin G 
inhibitor I, Calbiochem, Germany).  

4.5 Inhibition Assay for urokinase
The analysis of urokinase (Calbiochem) inhibition assay was performed in reaction mixtures 
containing 0.05 M Tris-HCl, 0.138 M NaCl, pH 8.0, 30 U/mL human urine urokinase, test 
compounds, and 50 μM substrate (Z-Gly-Gly-Arg-AMC.HCl, Calbiochem). Controls were 
performed using enzyme alone, substrate alone, enzyme with DMSO and a positive control. 

4.6 Inhibition Assay for kallikrein
The analysis of kallikrein (Calbiochem) inhibition was performed in reaction mixtures 
containing 0.05 M Tris-HCl, 0.138 M NaCl, pH 8.0, 2 nM human plasma kallikrein, test 
compounds, and 50 μM substrate (H-Pro-Phe-Arg-AMC acetate salt, Bachem). Controls were 
performed using enzyme alone, substrate alone, enzyme with DMSO and a positive control 
(Gabexate mesylate, Aldrich). 

4.7 Inhibition Assay for thrombin
Inactivation of thrombin (Calbiochem) was studied at 25 °C in reaction mixtures containing 
0.01 M sodium phosphate, 0.138 M NaCl, 0.1% PEG 6000, pH 7.0, 1.7 U/mL human plasma 
thrombin, test compounds, and 50 μM substrate (Z-Gly-Gly-Arg-AMC.HCl, Bachem). Controls 
were performed using enzyme alone, substrate alone, enzyme with DMSO and a positive 
control (3,4-Dichloroisocoumarin, Calbiochem, Germany).  

4.8 Inhibition Assay for trypsin
The analysis of trypsin (Calbiochem) inhibition was performed in reaction mixtures containing 
0.05 M Tris-HCl, 0.138 M NaCl, pH 8.0, 30 nM human pancreas trypsin, test compounds, and 
50 μM substrate (Z-Gly-Gly-Arg-AMC.HCl, Bachem). Controls were performed using enzyme 
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alone, substrate alone, enzyme with DMSO and a positive control (3,4-Dichloroisocoumarin, 
Calbiochem, Germany).  

4.9 Inhibition Assay for chymotrypsin
Inactivation of chymotrypsin (Calbiochem) was studied at 25 ºC in reaction mixtures containing 
0.05 M Tris-HCl, 0.138 M NaCl, pH 8.0, 30 nM human pancreas chymotrypsin, test compounds, 
and 100 μM substrate (Suc-Ala-Ala-Pro-Phe-7-amino-4-methylcoumarin, Bachem). Controls 
were performed using enzyme alone, substrate alone, enzyme with DMSO and a positive 
control (Gabexate mesylate, Aldrich). 

4.10 In Vitro Cytotoxicity
The cytotoxicity was assessed using general cell viability endpoint MTT (3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). Briefly, the day before experiment cells NIH 
3T3 (mouse embryonic fibroblast cell line, ATCC CRL-1658) or HEK 293T (human embryonic 
kidney epithelial cell line, ATCC CRL-11268) were seeded in 96 well tissue culture plates, in 
RPMI 1640 culture medium supplemented with 10% fetal serum bovine, 100 units of penicillin 
G (sodium salt) and 100 μg of streptomycin sulfate and 2 mM L-glutamine, at a concentration 
that allow cells to grow exponentially during the time of the assay. Compounds to be tested 
were diluted in dimethylsulfoxide (DMSO) and then serially diluted in the culture medium. 
Compounds at different concentrations and DMSO were then added to the cells. Cells were 
incubated at 37°C in humidified 5% CO2 atmosphere. After 48 hours, cell media containing 
DMSO (for control cells) or tested compound solution (for test cells) was removed and 
replaced with fresh medium containing MTT dye. After 3h of incubation the complete media 
was removed and the intracellular formazan crystals were solubilised and extracted with 
DMSO. After 15 min at room temperature the absorbance measured at 570 nm in microplate 
reader.
The percentage of cell viability was determined for each concentration of tested compound 
and the concentration of a compound reflecting a 50 % inhibition of cell viability (i.e. IC50) was 
determined from the concentration-response curve. This was done by applying non-linear 
regression procedure to the concentration response data using GraphPad PRISM software.

4.11 Chemical stability at pH 7.4
Chemical stability was determined for solutions of synthesized compounds (100 μM) in 
phosphate buffer (pH 7.4). Aliquots were taken in regular times and analysed by HPLC. 

4.12 Stability in human plasma
Human plasma was obtained from the pooled, heparinised blood of healthy donors, and was 
frozen and stored at -20 °C prior to use. For the stability assay, the compounds (10 µL of a 10-2 
M inhibitor stock solution), were incubated at 37 °C in human plasma that had been diluted to 
80% (v/v) with phosphate buffer pH 7.4. Aliquots were taken in regular times, the reaction was 
stopped by addition of MeCN and the samples were vortexed and centrifugated for 10 min and 
analysed by HPLC.
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4.13 Stability toward microsomal activity
Stability was assayed against Rat Pooled Liver Microsomes Male (Sprague-Dawley) 20 mg/mL 
from BD Gentest™. A typical incubation medium was prepared, containing 10 µL of microsomal 
protein, 285 µL of H2O, 80 µL phosphate buffer (pH 7.4) and NADPH generating system [20 µL 
of solution A (NADP+ and G6P) and 4 µL of solution B (G6PDH), both from BD Gentest™], in a 
37 °C thermostatic bath. Reaction was started by addition of the test compounds (10 µL of a 
10-3 M inhibitors stock solution). Aliquots were taken in regular times, the reaction was 
stopped by addition of MeCN and the samples were vortexed and centrifugated for 10 min and 
analysed by HPLC. 

4.14 HPLC system
Merck Hitachi Pump L-2130; Column Oven L-2300; UV detector L-2400 ( 345 nm). Column 
LiChroCart Purospher RP-18 (5 µm, 250-4 mm). Eluent isocratic MeOH/H2O (80/20 v/v in 12 
min runs) was used as mobile phase (1mL/min); 20 µL injection volumes.
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