Journal Name

ARTICLE

Electronic Supplementary Information

Solution processable low bandgap thienoisoindigo-based small molecules for organic electronic devices

Pei Han^a, Xiaohui Gong^a, Baoping Lin^{*a}, Zhenhong Jia^b, Shanghui Ye^{*b}, Ying Sun^a, Hong Yang^a

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.

E-mail: lbp@seu.edu.cn

^b Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210046, PR China.

E-mail: yeshh@iccas.ac.cn

Fig. S1. ¹H NMR spectra of compound 2.

Fig. S2. ¹³C NMR spectra of compound 2.

Fig. S3. ¹H NMR spectra of compound 3.

Fig. S4. ¹³C NMR spectra of compound 3.

Fig. S5. ¹H NMR spectra of compound 4.

Fig. S6. ¹³C NMR spectra of compound 4.

Fig. S7. ¹H NMR spectra of compound 5.

Fig. S8. ¹H NMR spectra of TII(BFu)₂.

ARTICLE

Fig. S9. ¹³C NMR spectra of TII(BFu)₂.

Fig. S10. ¹H NMR spectra of TII(Na)₂.

Fig. S11. ¹³C NMR spectra of TII(Na)₂.

Fig. S12. Cyclic voltammograms of TII(BFu)₂ and TII(Na)₂ in CH₂Cl₂ containing 0.1 M tetrabutylammonium perchlorate.

Fig. S13. Output (left) and transfer (right) characteristics for TII(BFu)₂ film pre-annealed at 150 °C (a), 170 °C (b) and 190 °C (c).

Fig. S14. Output (left) and transfer (right) characteristics for TII(Na)₂ film pre-annealed at 130 °C (a), 170 °C (b) and 190 °C (c).