Electronic Supplementary Information (ESI)

Selective sorption of palladium by thiocarbamoyl–substituted thiacalix[*n*]arene derivatives immobilized in amberlite resin: Application to leach liquors of automotive catalysts

Manabu Yamada,^{a,†} Muniyappan Rajiv Gandhi,^a Yoshihiko Kondo,^b Kazutoshi Haga,^c Atsushi Shibayama,^d and Fumio Hamada^c

^a Research Center for Engineering Science, Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan

^b Department of Life Science, Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan

^c Department of Applied Chemistry, Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan

^{*d*} Faculty of International Resource Sciences, Akita University, 1-1 Tegatagakuenmachi, Akita 010-8502, Japan

[†]Corresponding author. Tel +81 18 889 3068; fax: +81 18 889 3068.

E-mail address: myamada@gipc.akita-u.ac.jp

Supporting Information- Table of content

Table S1 Physical and chemical properties of XAD resin.

Fig. S1 (a) The chemical structure of XAD and (b) cluster model of XAD surface.

Fig. S2 FT-IR spectra of XAD, 8 and Pd(II) sorbed 8.

- Fig. S3 XRD patterns of XAD, 8, and Pd(II) sorbed 8.
- Fig. S4 WDXRF spectra of (a-b) C Kα for 8 before and after Pd(II) sorption.
- Fig. S5 WDXRF spectra of (a-b) N Kα for 8 before and after Pd(II) sorption.
- Fig. S6 WDXRF spectra of (a-b) O K α for 8 before and after Pd(II) sorption.
- Fig. S7 WDXRF spectra of (a-b) S Kα for 8 resin before and after Pd(II) sorption.
- Fig. S8 Van't Hoff plot relating In K against 1/T (a) 7 (b) 8.
- **Table S2** Thermodynamic parameters of 7 and 8.
- **Fig. S9** Effect of automotive catalyst volume. Bed height = 0.5 cm; flow rate = 0.1 mL/min; [Pd(II)] in automotive catalyst solution = 9.2 mg/L

Table S3 A comparison of the SCs of a few reported polymers for Pd(II) removal.

Constituents			
Matrix structure	Acrylic		
Classification	Nonionic Spherical		
Specific surface area (m²/g)	500		
Pore volume (cm ³ /g)	0.6		
Pore diameter (Å)	100		
Apparent density (g/L)	~655		
Moisture holding capacity (%)	61-69		
Harmonic mean diameter (mm)	0.43 - 0.69		
Uniformity coefficient	≦ 2.0		
Effective pH range	0-14		
Polarity	Intermediate polarity		

 Table S1 Physical and chemical properties of XAD resin.

Fig. S1 (a) The chemical structure of XAD and (b) cluster model of XAD surface.

Fig. S2 FT-IR spectra of XAD, 8 and Pd(II) sorbed 8.

Fig. S3 XRD patterns of XAD, 8, and Pd(II) sorbed 8.

Fig. S4 (a-b) WDXRF spectra of C Kα for 8 before and after Pd(II) sorption

Fig. S5 (a-b) WDXRF spectra of N Kα for 8 resin before and after Pd(II) sorption.

Fig. S6 (a-b) WDXRF spectra of O Kα for 8 resin before and after Pd(II) sorption.

Fig. S7 (a-b) WDXRF spectra of S K α for 8 resin before and after Pd(II) sorption.

Fig. S8 Van't Hoff plot relating In K against 1/T (a) 7 (b) 8.

Table S2 Thermodynamic parameters of 7 and 8.

Thermodyn	amic	7	8
∆Gº (kJ mol ⁻¹)	303 K	-10.07	-10.43
	313 K	-9.96	-9.98
	323 K	-9.59	-9.21
ΔH^{o} (kJ mol ⁻¹)		-16.96	-28.25
ΔS° (kJ mol ⁻¹ K ⁻¹)		-0.023	-0.060

Fig. S9 Effect of automotive catalyst volume. Bed height = 0.5 cm; flow rate = 0.1 mL/min; [Pd(II)] in automotive catalyst solution = 9.2 mg/L.

S.	Polymeric adsorbents	Sorption capacity	Ref.
No		(mg/g)	160
1 2	Dialon WAZIJ Melamine formaldehyde thiourea (MET) resin	ວ. <i>1</i> 15 2	10a 16b
2	Dualita CT 72	1J.Z 27 7	160
с л	Duolite G1-75	21.1	
4	Thiourea-Formaldenyde Chelating Resin (PTFT)	30.7	160
5	Thiourea-Formaldehyde Chelating Resin (PTF2)	49.8	16d
6	Phosphine sulphide-chelating polymer (Polymer 3)	53.0	16e
7	Duolite GT-73	21.2	17a
8	Calix[4]pyrrole[2]thiophene immobilized polymer	65.0	17b
9	POLYORGS V	18.4	17c
10	POLYORGS VI	48.0	17c
11	Polythioether resin with aminoisopropyl-mercaptan	64.8	17d
12	Spheron Oxine 1000	57.0	17e
13	Spheron Salicyl 1000	10.0	17e
14	Spheron 1000	1.6	17e
15	Dithizone modified chloromethylated polystyrene	72.1	18a
16	Amidinothioureido-silica gel	14.9	18b
17	Benzimidazolylazo resin	65.7	18c
18	Lewatit MP-500	9.9	18d
19	Lewatit MP-500A	9.4	18d
20	TUF resin	31.8	18e
21	Purolite S-940	53.2	19a
22	Amberlite XAD-7 impregnated Cyphos IL-101	71.0	9b
23	Triisobutyl phosphine sulfide resin (Polymer A)	54.0	19b
24	Triisobutyl phosphine sulfide resin (Polymer A)	76.3	19b
25	IRA 910	81.6	19b
26	Macroporous poly(vinyl-aminoacetone)	66.8	19c
27	Pyrazolone immobilized styrene-divinylbenzene	59.4	19d
28	7	51.55	Present study
29	8	91.74	Present study

 Table S3 A comparison of the SCs of a few reported polymers for Pd(II) removal.