Supporting Information for

A new sensitizer containing dihexyloxy-substituted triphenylamine as donor and a binary conjugated spacer for dye-sensitized solar cells

Mariana-Dana Damaceanu^a, Mihai Mihaila^{b,c}, Catalin-Paul Constantin^a, Stefan Chisca^a, Bogdan-Catalin Serban^b, Cristian Diaconu^b, Octavian Buiu^b, Emil Mihai Pavelescu^c, Mihaela Kusko^c

^a"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi-700487, ROMANIA

^bHoneywell Romania, Sensors and Wireless Laboratory, 3, George Constantinescu Street, BOC Tower, 020339 Bucharest, Romania,

^cNational Institute for Research and Development in Microtechnologies (IMT),126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania

^{*} Corresponding author: M. D. Damaceanu, email: damaceanu@icmpp.ro

Starting materials

All reactions were carried out under nitrogen atmosphere. p-iodophenol 99%, 1bromohexane 98%, 4-bromoaniline 99% (GC), 1,10-phenanthroline 99%, 5-formyl-2-furanboronic acid, 3-hexylthiophene 99%, cyanoacetic acid 99%, silica gel 60 for column chromatography (0.063 - 0.2)*n*-butyl lithium, 2.5 Μ solution mm), in hexane, tetrakis(triphenylphosphine)palladium(0), 99%, potassium t-butoxide 95%, potassium carbonate granulated (puriss. 99-101 %), sodium hydroxide pellets (puriss., ACS reagent), sodium sulfate anhydrous (puriss., 99-100.5%), sodium hydrogen carbonate powder (extra pure), potassium hydroxide pellets (puriss., 99-100.5%), copper(I) chloride (puriss, ACS reagent, 97%), POCl₃ (99%), hydrochloric acid (min. 37 %), anhydrous N,N-dimethylformamide 99.8%, dichloromethane (DCM) R.G (reagent ACS, stabilized with amylene), toluene (reagent ACS), hexane (mixture of isomers), ethyl acetate (extra pure), anhydrous tetrahydrofuran (\geq 99.9%), ethanol 96% (puriss. p.a.), diethylether (reagent ACS), 1,2-dichloroethane 99+% (ACS reagent), chloroform (for HPLC, ≥99.9%), methanol (puriss, ACS reagent, 99.8%) were purchased from Sigma-Aldrich. Copper (I) iodide Puratronic 99.998% (metals basis) and diethyl iodomethylphosphonate 98+% were purchased from Alfa Aesar, while piperidine 99.5 % was acquired from Acros Organics. All the chemicals and solvents used in this work were analytical grade and used without further purification.

Reaction mechanism

A novel dihexyloxy-substituted triphenylamine-based dye, named 3-{5-[2-(5-{4-[bis(4-hexyloxy-phenyl)-amino]-phenyl}-furan-2-yl)-vinyl]-3-hexyl-thiophen-2-yl}-2-cyanoacrylic acid (**BCS-1**), previously designed²⁰, was synthesized by a 9-step reaction sequence as shown in Scheme 1. Organometallic Suzuki coupling reaction of 4-bromo-*N*,*N*-bis(4-(hexyloxy)phenyl) aniline (*I*), previously obtained from 1-(hexyloxy)-4-iodobenzene and 4-bromoaniline, with 5-formyl-2-furanboronic acid was employed in order to introduce the furan ring into the conjugated linker of the dye, resulting in 5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)furan-2-carbaldehyde (2). The full, binary π -conjugated spacer was achieved through the formation of the vinyl linkage between furan and thiophene moieties, by the reaction of 2 with diethyl [(3-hexylthiophen-2-yl)methyl]phosphonate to form *N*,*N*-(bis(4-hexyloxy-phenyl)-*N*-(4-(5-(2-(3-hexylthiophen-2-yl)vinyl)furan-2-yl)phenyl-aniline (3). The formylation of 3 through the Vilsmeier reaction afforded the corresponding aldehyde (4) that underwent Knoevenagel condensation with cyanoacetic acid to yield the envisaged dye, **BCS-1**.

Figure S1. FTIR spectrum of BCS-1 dye

Figure S2. ¹³C-NMR spectrum of BCS-1 dye

Figure S3. UV-Vis absorption spectra of BCS-1 dye in different solvents

Figure S4. Photoluminescence spectra of **BCS-1** dye in different solvents by excitation at approx. 360 nm

Figure S5. Cyclic voltammograms of BCS-1 in TBAP/DMF solution (8 consecutive scans)

Figure S6. Cyclic voltammogram of BCS-1 in solid state recorded at 50 mV/s

Figure S7. Molecular structure of **BCS-1m**, the model of the **BCS-1** dye used for electronic structure calculations

Computational details

The Gaussian09 input used for geometry optimization at the B3LYP/311++G** level, using the geometry optimized at B3LYP/31+G* level as starting geometry.

```
#p opt=calcall b3lyp/6-311++G** guess=read
scf=tight int=(grid=99974) pop=regular
```

The total energy obtained is:

E(RB3LYP) = -2234.85859252 A.U. after 9 cycles Convg = 0.8234D-08 -V/T = 2.0037

The geometry convergence criteria attained are:

	Item	Value	Threshold	Converged?
Maximum	Force	0.000005	0.000450	YES
RMS	Force	0.00000	0.000300	YES
Maximum	Displacement	0.000905	0.001800	YES
RMS	Displacement	0.000176	0.001200	YES

The optimized geometry is listed below:

С	6.202974	3.480851	0.888687
С	5.970023	2.117235	0.966313
С	5.267919	1.450843	-0.048593
С	4.806691	2.190967	-1.137318
С	5.019186	3.568057	-1.214466
С	5.724671	4.220554	-0.200272
Н	6.745273	3.999037	1.670390
Н	6.338055	1.555295	1.816539
Н	4.268626	1.690368	-1.933705
Н	4.643682	4.109589	-2.072265
Ν	5.050259	0.041462	0.028591
С	6.171634	-0.804257	0.286077
С	6.117673	-1.780861	1.292319
С	7.353805	-0.659267	-0.439220
С	7.209247	-2.594070	1.549034
Н	5.210090	-1.899935	1.872293
С	8.465393	-1.460673	-0.173961
H	7.414029	0.094405	-1.215391
С	8.395509	-2.439617	0.819685
H	7.171469	-3.348869	2,325289
Н	9.366758	-1.315937	-0.754137
C	3,770063	-0.500436	-0.163829
Ċ	2.613502	0.230956	0.165756
c	3,601172	-1.795361	-0.692429
c	1.351589	-0.306415	-0.026820
н	2 712094	1 225680	0.520020
C	2.337350	-2.328396	-0.875743
н	4 471264	-2 378814	-0 964318
Ċ	1 179211	-1 600096	-0 549837
н	0 480920	0 276740	0 245238
н	2 249580	-3 324172	-1 294927
Ċ	-0 137639	-2 168498	-0 747468
c	-0 580429	-3 394404	-1 197931
c	-1 993246	-3 357816	-1 169306
c	-2 356964	-2 112640	-0 701635
н	-2 674886	-4 144436	-1 453269
Ċ	-3 630946	-1 526061	-0 468872
c	-3 852811	-0 270207	0.400072
н	-1 169391	-2 175398	-0 703589
н	-2 9931/7	0 351398	0.705505
C	-5 131807	0.329363	0.230233
c	-5 355367	1 621920	0.241050
c	-6 635635	-0 506587	-0 067120
c c	-6 721622	1 907697	0.851162
c	7 576661	0 977612	0.054402
с ц	-7.370001 7 102707	0.077013	1 210/240
n C	- 2 000001	2.0J4221 0 067512	1.210424 0 511105
c c	-0.900994	0.90/343	0.311423
с ц	-3.300210	1 010050	0.1/5019
п	-9.309343	T.9T0020	0.0/0/0/

С	-11.374784	0.497882	0.348205
0	-11.724585	1.581048	0.763557
0	-12.256261	-0.463073	-0.012223
Н	-13.142606	-0.101072	0.132020
0	9.415265	-3.282191	1.155456
0	5.997066	5.557784	-0.178589
С	5.540343	6.361913	-1.257697
Н	4.448098	6.338846	-1.339357
Н	5.862839	7.376475	-1.029906
Н	5.984197	6.045752	-2.208030
С	10.644876	-3.174920	0.450937
Н	11.097027	-2.185979	0.584038
Н	11.300323	-3.931036	0.879773
Н	10.512046	-3.374841	-0.617931
С	-9.698221	-1.233612	-0.323966
Ν	-9.460658	-2.291546	-0.729591
Н	0.038518	-4.220620	-1.507363
С	-4.259166	2.587931	1.097339
Н	-3.613652	2.189617	1.885962
Н	-3.623385	2.817786	0.236956
Н	-4.680647	3.527708	1.457861
0	-1.218498	-1.387140	-0.444521

The Gaussian09 route used for computing the excited states energies and oscillator strengths of

BCS-1m using time-dependent CAM-B3LYP with the 6-311++G** basis set is listed below.

#p td=(50-50,nstates=10) cam-b3lyp/6-311++G**
geom=check guess=read scf=tight int=(grid=99974) pop=regular

The total energy obtained is:

E(RCAM-B3LYP)	= -2233.90031102	A.U. after 18 cycles
Convg =	0.7194D-08	-V/T = 2.0035

The excited states energies, wavelengths, and oscillator strengths are listed below:

1:	Triplet	0.9478	eV	1308.18	nm	f=0.0000	<s**2>=2.000</s**2>
2:	Triplet	2.0674	eV	599.71	nm	f=0.0000	<s**2>=2.000</s**2>
3:	Singlet	2.4436	eV	507.38	nm	f=1.6059	<s**2>=0.000</s**2>
4:	Triplet	2.7459	eV	451.52	nm	f=0.0000	<s**2>=2.000</s**2>
5:	Triplet	3.1253	eV	396.71	nm	f=0.0000	<s**2>=2.000</s**2>
6:	Triplet	3.2334	eV	383.45	nm	f=0.0000	<s**2>=2.000</s**2>
7:	Triplet	3.2656	eV	379.67	nm	f=0.0000	<s**2>=2.000</s**2>
8:	Triplet	3.3077	eV	374.83	nm	f=0.0000	<s**2>=2.000</s**2>
9:	Triplet	3.4302	eV	361.44	nm	f=0.0000	<s**2>=2.000</s**2>
10:	Singlet	3.4411	eV	360.31	nm	f=0.0302	<s**2>=0.000</s**2>
11:	Triplet	3.5917	eV	345.19	nm	f=0.0000	<s**2>=2.000</s**2>
12:	Singlet	3.7548	eV	330.20	nm	f=0.2102	<s**2>=0.000</s**2>
13:	Triplet	3.8029	eV	326.03	nm	f=0.0000	<s**2>=2.000</s**2>
14:	Singlet	3.8231	eV	324.30	nm	f=0.0195	<s**2>=0.000</s**2>
15:	Singlet	3.9013	eV	317.80	nm	f=0.0462	<s**2>=0.000</s**2>
16:	Singlet	4.0958	eV	302.71	nm	f=0.0529	<s**2>=0.000</s**2>
17:	Singlet	4.2245	eV	293.49	nm	f=0.1790	<s**2>=0.000</s**2>
18:	Singlet	4.3115	eV	287.56	nm	f=0.1601	<s**2>=0.000</s**2>
19:	Singlet	4.4227	eV	280.34	nm	f=0.0753	<s**2>=0.000</s**2>
20:	Singlet	4.4493	eV	278.66	nm	f=0.0771	<s**2>=0.000</s**2>

The isotropic polarizability was computed at the B3LYP/6-311++G** level using the Gaussian09 route below using the geometry optimized at the same theory level. #p polar b3lyp/6-311++G** geom=check guess=read int=(grid=99974)

The obtained isotropic polarizability:

```
SCF Polarizability for W= 0.000000:

1 2 3

1 0.135561D+04

2 -0.613112D+02 0.549734D+03

3 -0.148733D+02 0.357017D+02 0.304231D+03

Isotropic polarizability for W= 0.000000 736.53 Bohr**3.
```