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Table S1. The structural parameters of HET-s triplet fibrils which are compared with experimental values. 

radius (Å) rotation/subunit arc/subunit pitch length (Å)

model¶ 21.97 3.12 1.20 361.54

pH 2

Experiment 1 22 3.12 1.20 361

pH 3 Experiment 1 31 3.37 1.81 335

¶ The structure of pH2 HET-s triplet fibril which is constructed with 2KJ3 according to the experimental structural 

parameters.

§ The pH3 HET-s triplet fibril is resulted by the conformational changes due to the torsional mode shape of pH2 HET-s 

triplet fibril.

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2015



Fig S1. Cross-sectional area of Triplet fibril. ,  are the outside and inner side diameter of HET-s triplet fibril. 𝐷1  𝐷2

HET-s triplet fibril is regarded as a hollow beam for the calculation of bending rigidity and torsional modulus.



Euler-Bernoulli Beam Model

The equations of motion for bending and torsional mode of a beam is given below.

for bending mode (S1)
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for torsional mode (S2)
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, where w and θ are the transverse displacement for bending mode and torsional mode respectively,  is a bending 𝐸𝐵𝐼

rigidity,  is a torsional modulus. Those values are introduced in the manuscripts. is a mass density and  𝐺𝑇 𝜌 𝐴
represents a cross-section area of a fibril. A coordinate of x is defined along the longitudinal direction of HET-s 
fibril. Let the transverse deflection and torsional angle be defined following form for vibrational motion; 

, where  and  are representing natural frequencies for 𝑤(𝑥,𝑡) = 𝑧(𝑥)exp [𝑖𝜔𝑏𝑡] 𝑎𝑛𝑑 𝜃(𝑥,𝑡) =  𝜑(𝑥)𝑒𝑥𝑝[𝑖𝜔𝑡𝑡] 𝜔𝑏 𝜔𝑡

bending and torsional modes respectively,  and  are their corresponding eigenmodes. Euler-Bernoulli beam 𝑧(𝑥) 𝜑(𝑥)
model equations finally can be transformed into following equations.
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for torsional mode (S4)

𝐺𝑇

𝜌
𝑑2𝜑

𝑑𝑥2
+ 𝜔𝑡

2𝜑 = 0

From Eq. (S3, S4), following equations can be derived2-5.
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The bending rigidity and torsional modulus for model 1 was calculated with Eq. S5 and S6.

Timoshenko beam model

The equation for Timoshenko beam model is given below.
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 is the total bending deflection,  is the deflection due to bending deformation,  is the deflection due to shear 𝛿 𝛿𝐵 𝛿𝑆

deformation,  is the length-independent bending elastic modulus,  is the intrinsic shear modulus, I, A, and L 𝐸0
𝐵 𝐺𝑆

represent the cross-sectional moment of inertia, the cross-sectional area, and the length, respectively, of an amyloid 
fibril, a and b are the boundary-condition-dependent constants, and c is a form factor which means a shear 
coefficient that depends on the cross-sectional shape. A value of 7.5788 was used for a form factor c. the total 
bending deflection can be represented with summation of the bending deformation and shear deformation.
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, where V represents a shear force a is an area beyond neutral axis, y represents a distance between center of gravity 
of this area and neutral axis of entire cross-section ,A is a total area of section, I is a moment of inertia of section, t 
(= ) is a total thickness of gap, and  is shear stress. Fig. S1.was referred to calculate the form factor (c). 𝐷2 ‒ 𝐷1 𝜏
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Eq. S8 can demonstrate the dependence of the bending elastic modulus for the length of HET-s fibrils.
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