L-Proline Nitrate: A Recyclable and Green Catalyst for the Synthesis of Highly Functionalized

Piperidines

Nikita R Agrawal,^{a,c} Sandeep P Bahekar,^a Prashant B Sarode,^a Sanjio S Zade,^b and Hemant S

Chandak^{a,*}

с

- ^a Department of Chemistry, G. S. Science, Arts and Commerce College, Khamgaon 444303, India Fax:
 (+)91-7263-253844, E-mail: chemants@gmail.com (Hemant S Chandak)
- b Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.

Electronic Supplementary Information

Present Address: Department of Chemistry, Govt. V.I.S.H., Amravati 444602, India

Table of contents

	Page No.
Title Page	1
Figure S1 and S2	3
Absolute energies at B3LYP/6-31G(d) (Table S1)	4
Calculation of Green Chemistry Metrics	8
General Experimental details	10
Product characterization data	11
¹ H Spectrum of 4a	19
Mass Spectrum of 4a	19
¹ H Spectrum of 4b	20
Mass Spectrum of 4b	20
¹ H Spectrum of 4e	21
¹³ C Spectrum of 4e	21
Mass Spectrum of 4e	22
¹ H Spectrum of 4 f	22
Mass Spectrum of 4f	23
¹ H Spectrum of 4h	23
¹³ C Spectrum of 4h	24
Mass Spectrum of 4h	24
¹ H Spectrum of 4i	25
¹³ C Spectrum of 4i	25
Mass Spectrum of 4i	26
¹ H Spectrum of 4 j	26
Mass Spectrum of 4j	27
¹ H Spectrum of 4 k	27
Mass Spectrum of 4k	28
¹ H Spectrum of 4m	28
¹³ C Spectrum of 4m	29
Mass Spectrum of 4m	29
¹ H Spectrum of 4n	30
¹³ C Spectrum of 4n	30
Mass Spectrum of 4n	31
¹ H Spectrum of 40	31
¹³ C Spectrum of 40	32
Mass Spectrum of 40	32
¹ H Spectrum of 4q	33
¹³ C Spectrum of 4 q	33
Mass Spectrum of 4q	34
¹ H Spectrum of 4r	34
Mass Spectrum of 4r	35
¹ H Spectrum of 4 t	35
¹ H Spectrum of 4u	36
Mass Spectrum of 4u	36
¹ H Spectrum of 4 v	37
Mass Spectrum of 4v	37
X-Ray Structure of 40 (Figure S3)	38
References	38

Figure S1. Energetics of the reaction via L-proline mediated aniline enamine pathway

Figure S2. Energetics of the reaction via L-proline mediated iminium activation of the aldehydes

	Absolute Energy ^a	Absolute Energy (PCM) ^b	ZPVE (kcal mol ⁻
Aniline	-287.6017597	-287.6083904	73.67215
Methyl Acetoacetate	-421.025418	-421.0334358	80.61808
Methyl Acetoacetate-enol	-421.0205123	-421.0274342	81.27901
MeOH	-115.7144051	-115.7192461	32.30035
Proline	-401.037168	-401.1567542	91.22973
Benzaldehyde	-345.573442	-345.579287	69.16718
Enamine	-632.2083078	-632.2153068	140.14109
Vater	-76.4089533	-76.4160764	-76.41607
ΓS and Intermediates of pathway a			
$\begin{array}{c} & & & \\ & & & \\ & H \\ & & & \\ & & \\ Ph \\ H \\ & H \\ \end{array} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	-824.3259904	-824.3411007	187.43726
	-708.629732	-708.6406468	157.14814
Aniline+Acetoacetate Product Ph_N_H_O Aniline Enamine	-632.2083078	-632.2153068	140.14109
Ph N O Ph O Ph	-1093.460188	-1093.478482	241.11673
AnilineEnamine+Benzaldehyde+MeOH TS Ph_N_U_O_ HO_Ph AnilineEnamine+Benzaldehyde Product	-977.7693597	-977.7814592	211.06697
Ph_N O	-901.3354226	-901.3466171	193.3764

Table S1. Absolute energies of reactants, intermediates and transition states at B3LYP/6-31G(d)

AnilineEnamine+Benzaldehyde-H2O Product

4

Me			
	-937.8823602	-937.901659	205.50227
Acetoacetate+Proline+MeOH TS			
Он			
	-822.181354	-822.1936773	174.38638
Acetoacetate+Prolineadduct			
	-745.7507395	-745.7632826	157.16132
Proline enamine product			
	-1207.033019	-1207.05127	260.90579
ProlineEnamine+Benzaldehyde+MeOH TS			
O O O O HO HO HO HO HO	-1207.042528	-1207.065895	262.80969
ProlineEnamine+Benzaldehyde+MeOH Product			
	-690.1651566	-690.1739074	135.05945

BenzelideneAcetoacetate Product

AnilineEnamine+Benzaldehyde-H2O Product

TS and Intermediates of L-proline mediated aniline enamine pathway			
	-1109.771264	-1109.799322	248.09215
Acetoacetate+Aniline+Proline TS			
H ^N H ^O			
ц \́́́́́́́	-1109.783283	-1109.812718	249.99701
Acetoacetate+Aniline+Proline Product			

-1378.918221 -1378.935127 302.22473

AnilineEnamine+Aldehyde+Proline TS

-1378.934508

304.40079

AnilineEnamine+Aldehyde+Proline Product

TS and Intermediates of L-proline mediated iminium activation of aldehyde

$ \begin{array}{c} & H^{-O} \\ & H^{-O} $	-862.4388175	-862.454731	193.95554
And Hyde + From the MeOH FS $O \oplus H^-OMe$ H^+H_2O H^+H_2O Ph Benzaldehyde+Proline+MeOH iminium	-786.0109137	-786.0375646	178.97453
Ph	-1207.0370152	-1207.0540376	261.40103
Iminium +acetoacetate+MeOH TS O O O O O O O O	-1091.3290846	-1091.3425379	228.35161
$ \begin{array}{c} $	-1378.9097971	-1378.9444223	302.81736

Iminium +acetoacetate+Aniline TS

-1378.9229

-1378.9553161 305.92218

Iminium +acetoacetate+Aniline product

^a All energies are given in Hartrees except ZPVE.

Energies are calculated by single-point calculation on gas phase optimized geometries for methanol as a solvent with the Polarized Continuum Model (PCM) at the same level of theory.

Calculation of green chemistry metrics ^[1]

1. E factor: The E factor of organic conversion can be calculated as mass of waste i.e. the total mass of raw materials minus the total mass of product, all divided by the total mass of product. The ideal value for E factor should be zero.^[2]

E-factor = [mass of waste]/ mass of product

Where mass of waste = total mass of raw materials minus the total mass of product

$$= [0.331 \text{ g} (\text{aniline}) + 0.371 \text{ g} (\text{benzaldehyde}) + 0.203 \text{ g} (\text{methyl acetoacetate}) + 0.0312 \text{ g} (\text{proline})$$

nitrate) + 0.395 g (methanol)- 0.721 g (product)]

Mass of waste = 0.6107 g

E-factor = 0.6107/0.721

E-factor = 0.8469 (including mass of methanol and proline nitrate)

As methanol and proline nitrate can be recycled, E-factor excluding mass of methanol and proline nitrate is

Mass of waste = [0.331 g (aniline) + 0.371 g (benzaldehyde) + 0.203 g (methyl acetoacetate) - 0.721 g (product)] = 0.184 g

E-factor = 0.184/0.721= 0.255 (excluding the mass of methanol)

2. Atom economy (AE): AE serves to determine the efficiency of a chemical reaction with regard to how many atoms from the starting materials reside within the product. The ideal value for AE should be 100%.^[3]

AE = MW of product $\div \sum (MW \text{ of stoichiometric reactants}) \times 100$

AE = 460.57 (product) $\div [2(93.12) \text{ (aniline)} + 2(106.12) \text{ (benzaldehyde)} + 116.11(MAA)] \times 100$ AE = 89.50%

- **3. Process mass intensity (PMI)**: PMI is defined as the total mass used in a process divided by the mass of product. The ideal value for PMI should be 1.^[4]
- $PMI = \sum (mass of stoichiometic reactants + solvents used in the process) / mass of product$

= [0.331 g (aniline) + 0.371 g (benzaldehyde) + 0.203 g (methyl acetoacetate) + 0.0312 g (proline)nitrate) + 0.395 g (methanol + 1 g (water) + 0.0867 g (toluene)] / 0.721 g (**product**)

PMI = 3.354

4. Reaction mass efficiency (RME): Reaction mass efficiency is defined as the mass of product divided by the sum of total mass of stoichiometic reactants. The ideal value for RME should be 100%.^[4]

RME = mass of product \sum (mass of stoichiometic reactants) \times 100

= 0.721 g (**product**)/ [0.331 g (aniline) + 0.371 g (benzaldehyde) + 0.203 g (methyl acetoacetate)] × 100 = 0.721/ 0.905* 100

RME = 79.66%

General experimental details

All solvents and chemicals were obtained commercially and were used as received. Melting points were determined in an open capillary and are uncorrected. IR spectra were recorded using a Spectrum-60 spectrometer instrument. NMR spectra were taken with a Bruker Avance II at 400 MHz / Bruker DMX spectrometer at 500 MHz (1H) and 125 MHz (13C) using CDCl3 or DMSO-d6 as the solvent with TMS as internal standard. The crystal data were collected with SuperNova, X-ray diffractometer using graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 100 K. The structure was solved by direct methods using using SHELXS97 software. All of the non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F² using SHELXL97. All H atoms were allowed to ride on the parent atom in the model during refinement.

General procedure for the preparation of functionalized piperidines:

A mixture of 1,3-dicarbonyl (1.75 mmol), amine (3. 5 mmol), aldehyde (3.5 mmol) and _L-proline nitrate (31.2 mg, 0.175 mmol) in MeOH (0.5 mL) was stirred at room temperature for an appropriate time (Table 2). After completion of the reaction, as indicated by TLC, solid obtained was filtered under suction to get product of sufficient purity. To recover the catalyst, initially methanol from the filtrate was removed under reduced pressure and residue was washed with a little quantity of water to get an aqueous solution of the catalyst as a filtrate. Water from the filtrate was removed under reduced pressure and residue by forming azeotrope with a very little amount of toluene to get the catalyst which was then available for the next run.

Scheme S1: Functionalised piperidine depicting different types of hydrogen

Methyl 1,2,6-triphenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3-carboxylate (4a)⁵

White solid; (Yield 0.721g; 90%); mp: 165-167 °C; IR (cm⁻¹): 3258, 1660, 1586, 1504, 1251, 1078; ¹H NMR (500 MHz, CDCl₃) δ 2.78-2.85 (m, 2H, H_{5a} H_{5b}), 3.93 (s, 3H, OCH₃), 5.14 (brs,1H, H₆), 6.28-7.31 (m, 21H, H₂+Ar-H), 10.25 (s, 1H, NH); HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₁H₂₈N₂NaO₂ 483.2048, found 483.2036.

Methyl 2,6-bis(4-methoxyphenyl)-1-phenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3carboxylate (4b)⁵

White solid; (Yield 0.737g; 81%); mp 174-176 °C; IR (cm⁻¹): 3058, 1651, 1592, 1245, 1189, 1070 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ ppm: 2.77-2.83 (m, 2H, H_{5a} H_{5b}), 3.78 (m, 6H, OCH₃), 3.92 (s, 3H, OCH₃), 5.0 (brs, 1H, H₆), 6.36-7.26 (m, 19H, H₂+Ar-H), 10.26 (s, 1H, NH); HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₃H₃₂N₂NaO₄ 543.2260, found 543.1450.

Methyl 2,6-bis(4-isopropylphenyl)-1-phenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3carboxylate (4e)

White solid; (Yield 0.753g; 79%); mp 160-162 °C; IR (cm⁻¹): 3231, 1654, 1589, 1501, 1261, 1074 cm⁻¹, ¹H NMR (400 MHz, CDCl₃) δ ppm (syn:anti = 10:90):, 1.20-1.22 (m, 1.2H, CH (CH₃)₂), 1.27-1.35 (m, 10.8H, CH (CH₃)₂), 2.72-2.83 (m, 0.46H, [CH (CH₃)₂], 2.86-2.98 (m, 1.54H, [CH (CH₃)₂], 3.77(s, 0.44H, OCH₃), 3.97(s, 2.56H, OCH₃), 5.15 (br s, 1H, H₆), 6.22-7.61 (m, 19.7H, H₂+Ar-H), 10.29 (s, 0.9H, NH); 10.7 (s, 0.1H, NH); ¹³C NMR (100 MHz,CDCl₃): 23.91, 24.03, 24.07, 24.20, 33.63, 33.75, 33.84, 50.99, 54.80, 98.00, 112.90, 115.20, 115.93, 123.88, 125.78, 126.11, 126.26, 126.57, 126.70, 126.90, 128.76, 128.87, 129.30, 137.91, 140.38, 141.09, 146.68, 147.11, 147.85, 156.53,168.70; HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₇H₄₀N₂NaO₂ 567.2987, found 567.2107.

Methyl 1-phenyl-4-(phenylamino)-2,6-bis(3,4,5-trimethoxyphenyl)-1,2,5,6-tetrahydropyridine-3carboxylate (4f)⁶

White solid (Yield 0.863g; 77%); mp 145-147 °C; IR (cm⁻¹): 3241, 2996, 2938, 2835, 1656, 1592, 1502, 1461, 1416, 1323, 1256, 1126, 1006 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ ppm: 2.77-3.00 (m, 2H, H_{5a} +H_{5b}), 3.69-3.73 (m, 12H, OCH₃^a, OCH₃^c), 3.83-3.84 (m, 9H, OCH₃^b+ OCH₃^d), 5.06 (brs, 1H, H₆), 6.34-7.15 (m, 15H, H₂+ArH), 10.25 (s, 1H, NH); HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₇H₄₀N₂NaO₈ 663.2682, found 662.9989.

Methyl 26-bis(4-hydroxyphenyl)-1-phenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3carboxylate (4h)

White solid; (Yield 0.673g; 78%); mp 170-172 °C; IR (cm⁻¹): 3290, 1594, 1319, 1247, 1074 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) δ ppm: 2.74-2.86 (m, 2H, H_{5a}+ H_{5b}), 3.84 (s, 3H, OCH₃), 5.19 (br s, 1H, H₆), 6.17 (s, 1H, H₂), 6.65-7.17 (m, 18H, Ar-H), 9.24(s, 1H, OH_a), 9.28 (s, 1H, OH_b), 10.17 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): 33.20, 51.01, 54.05, 56.12, 98.02, 115.14, 124.62, 127.08, 127.17, 128.97, 134.03, 137.62, 154.69, 156.23, 167.52; HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₁H₂₈N₂NaO₄ 515.1174, found 515.1947.

Methyl 2,6-bis(2-chlorophenyl)-1-phenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3carboxylate (4i)

White solid; (Yield 0.722g; 78%); mp 166-168 °C; IR (cm⁻¹): 3249, 1660, 1595, 1327, 1246, 1046 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ ppm: (syn:anti 13:87) 2.8 (dd, J=16.06, 8.04 Hz, 1H, H_{5a}), 3.06 (dd, J= 16.04, 8 Hz, 1H, H_{5b}), 3.73 (s, 0.4H, OCH₃), 3.89 (s, 2.6H, OCH₃), 5.46 (brs, 0.87H, H₆), 5.46 (brs, 0.13H, H₆), 6.508 (s, 1H, H₂), 6.40-7.45 (m, 19H, H₂+Ar-H), 10.10 (s, 0.87H, NH), 10.77 (s, 0.13H, NH); ¹³C NMR (100 MHz,CDCl₃): 29.55, 34.42, 50.80, 51.11, 99.20, 114.25, 117.65, 122.00, 124.78, 125.92, 126.11, 127.16, 128.03, 128.52, 128.72, 128.98, 129.01, 129.18, 129.28, 129.32, 129.65, 131.11, 132.39, 133.37, 137.88, 138.72, 140.09, 146.32, 155.54, 168.87; HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₁H₂₆Cl₂N₂NaO₂ 551.1269, found 551.0179.

Ethyl 1,2,6-triphenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3-carboxylate (4j)⁷

White solid; (Yield 0.664g; 80%); mp 171-172 °C; IR (cm⁻¹): 3059, 3018, 2980, 2872, 1651, 1504, 1454, 1371, 1255, 1070 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ ppm: 1.47 (t, 3H, OCH₂CH₃), 2.78-2.86 (m, 2H, H_{5a}+ H_{5b}), 4.33-4.44 (m, 2H, OCH₂CH₃), 5.14 (brs, 1H, H₆), 6.27-7.33 (m 21H, H₂+Ar-H), 10.29 (s, 1H, NH); HRMS (ESI): m/z [M-H]⁺ calc. for C₃₂H₂₉N₂O₂ 473.2229, found 473.2400.

Ethyl 2,6-bis(4-methoxyphenyl)-1-phenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3carboxylate (4k)⁸

White solid; (Yield 0.645g, 69%); mp 165-167°C; IR (cm⁻¹): 3750, 2988, 2902, 2819, 2029, 1974, 1496, 1417, 1240, 687, 667 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ ppm: 1.46 (t, J=6.88 Hz, 3H, OCH₂CH₃), 2.77- 2.84 (m,2H, H_{5a}, H_{5b}), 3.78 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 4.33-4.45 (m, 2H, OCH_{2(a+b)}CH₃), 5.09 (brs, 1H, H₆), 6.37-7.09 (m, 19H, H₂+ Ar-H) 10.31 (s, 1H, NH); HRMS (ESI): m/z [M-H]⁺ calc. for C₃₂H₂₉N₂O₂ 533.2440, found 533.1925.

Ethyl 2,6-bis(4-fluorophenyl)-1-phenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3carboxylate (4m)

White solid; (Yield 0.643g; 72%); mp 204-205 °C; IR (cm⁻¹): 3671, 2996, 2981, 2815, 2187, 2053, 1970, 1648, 1607, 1499, 1251, 751 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ ppm: 1.44-1.46 (t, 3H, J= 7.0 Hz, OCH₂CH₃), 2.72-2.85 (dd, 2H, J= 15.1, 7.52 Hz, H_{5a}+H_{5b}), 4.30 (m, 1H, OCH_aCH₃), 4.33 (m, 1H, OCH_bCH₃), 5.10 (d, 1H, H₆), 6.38-7.31 (m, 19H, H₂+ Ar-H), 10.31 (s, 1H, NH); ¹³C NMR (100 MHz,CDCl₃): 14.83, 33.82, 54.63, 59.85, 98.06, 113.03, 114.94, 115.15, 115.39, 115.61,116.60, 125.68, 125.90, 127.89, 127.97, 128.11, 128.19, 128.88, 129.0, 129.04, 129.39,137.77, 138.11, 138.14,139.51,139.52, 146.65, 155.93, 160.32, 160.78, 162.75, 163.22, 168.09; HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₂H₂₈F₂N₂NaO₂ 533.2017, found 533.1345.

Ethyl 2,6-bis(4-isopropylphenyl)-1-phenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3carboxylate (4n)

White solid; (Yield 0.782g; 80%); mp 169-170 °C; IR (cm⁻¹): 3230. 1653, 1577, 1261, 1190, 1076 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ ppm (syn:anti = 09:91): 1.20-1.22 (m, 1.1H, CH (CH₃)₂), 1.27-1.35 (m, 10.9H, CH (CH₃)₂), 1.50-1.53 (t, 3H, J= 7.12 Hz, OCH₂CH₃), 2.72 -2.76 (m, 0.47H, H_{5a}+H_{5b}), 2.86 -2.97 (m, 1.53H, H_{5a}+H_{5b}), 2.86-3.00 (m, 2H, CH(CH₃)₂, CH(CH₃)₂), 4.34-4.54 (m, 2H, OCH₂CH₃), 5.16 (brs, 1H, H₆), 6.22-7.32 (m, 19H, H₂+Ar-H), 10.34 (s, 0.91H, NH), 10.7 (s, 0.09H, NH); ¹³C NMR (100 MHz,CDCl₃): 14.85, 23.91, 24.06, 24.20, 24.29, 33.63, 33.74, 33.84, 54.77, 59.20, 98.29, 112.92, 115.27, 115.90, 123.80, 125.68, 126.05, 126.27, 126.45, 126.58, 126.70, 126.94,

128.74, 128.88, 129.28, 137.99, 140.43, 141.21, 146.63, 147.15, 147.84, 156.34,168.39; HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₈H₄₂N₂NaO₂ 581.3144, found 581.2186.

Ethyl 1-phenyl-4-(phenylamino)-2,6-bis(3,4,5-trimethoxyphenyl)-1,2,5,6-tetrahydropyridine-3carboxylate (40)

White solid; (Yield 0.824g; 72%); mp 175-176 °C; IR (cm⁻¹): 3401, 2971, 2942, 2194, 1954, 1648, 1508, 1247, 1106, 718 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ ppm: 1.43-1.47 (t, 3H, OCH₂CH₃), 2.77-2.80 (dd, J= 14.9, 7.4 Hz, 1H, H_{5a}), 2.95-3.00 (dd, J= 14.9, 7.4 Hz, 1H, H_{5b}), 3.70-3.75 (m, 12H, OCH₃), 3.86-3.88 (m, 6H, OCH₃), 4.29-4.50 (m, 2H, OCH₂CH₃), 5.06 (brs, 1H, H₆), 6.39-7.28 (m, 13H, H₂+ Ar-H), 10.34 (s, 1H, NH); ¹³C NMR (100 MHz,CDCl₃): 15.05, 33.70, 55.43 55.97, 56.02, 56.46, 58.42, 59.56, 60.88, 60.94, 97.50, 103.12, 103.83, 113.02, 116.49, 125.99, 126.17, 128.82, 128.97, 129.40, 136.44, 136.97, 137.84, 138.53, 139.72, 146.94, 152.99,153.37, 156.76, 168.09; HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₇H₄₀N₂NaO₇ 677.2839, found 677.1614.

Ethyl 2,6-bis(4-hydroxyphenyl)-1-phenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3carboxylate (4q)

White solid; (Yield 0.78g; 88%); mp 175-177 °C; IR (cm⁻¹): 3012, 2868, 2673, 1578, 1288, 1164 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) δ ppm: 1.37 (t, 3H, J= 7.0 Hz, OCH₂CH₃), 2.73-2.89 (m, 2H, H_{5a}+

H_{5b}), 4.27- 4.37 (m, 2H, OC**H**₂CH₃), 5.20 (brs, 1H, H₆), 6.17 (s, 1H, H₂), 6.64-7.17 (m, 18H, Ar-H), 9.24(s, 1H, OH_a), 9.28 (s, 1H, OH_b), 10.25 (s, 1H, NH); ¹³C NMR (120 MHz, DMSO- d_6): 14.59, 33.61, 54.24, 59.33, 98.44, 115.13, 124.45, 127.09, 129.00, 134.16, 137.77, 154.73, 156.23, 167.20; HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₂H₃₀N₂NaO₄ 529.2103, found 529.1274.

Ethyl 2,6-bis(2-chlorophenyl)-1-phenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3carboxylate (4r)

White solid; (Yield 0.618g; 65%); mp 158-160 °C; IR (cm-1): 3509, 2926, 2859, 2111, 1962, 1751, 1619, 1255, 1173, 743 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ ppm: 1.36 (t, J= 6.88 Hz, 3H, OCH₂CH₃), 2.88-3.0 (m, 2H, H_{5a} +H_{5b}), 4.29-4.32 (m, 2H, OCH₂CH₃), 5.41 (brs, 1H, H₆), 6.41-7.22 (m, 19H, H₂+Ar-H), 10.12 (s, 1H, NH); HRMS (ESI): m/z [M+H]⁺ calc. for C₃₂H₂₉Cl₂N₂O₂ 543.1606, found 543.0548.

Ethyl 2,6-bis(4-bromophenyl)-1-phenyl-4-(phenylamino)-1,2,5,6-tetrahydropyridine-3carboxylate (4t)⁹

White solid; (Yield 0.962g; 87%); mp 221-222 °C; IR (cm⁻¹): 3034, 1650, 1594, 1499, 1250, 1178, 1065 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ ppm: 1.45 (t, J=5.52Hz, 3H, OCH₂CH₃), 2.75-2.81 (m, 2H, H_{5a}+H_{5b}), 4.32-4.44 (m, 2H, OC**H**₂CH_b), 5.07 (brs , 1H, H₆) 6.34 (s. 1H, H₂), 6.41-7.40 (m, 18H, Ar-H), 10.28 (s, 1H, NH)

Ethyl 1-(4-chlorophenyl)-4-(4-chlorophenylamino)-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3carboxylate (4u)

White solid; (Yield 0.599g, 63%); mp 204-206 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 1.47 (t, J= 7.64 Hz, 3H, OCH₂CH₃), 2.71-2.84 (m, 2H, H_{5a} +H_{5b}), 4.34-4.37 (m, 2H, OCH₂CH₃), 5.11 (brs, 1H, H₆), 6.16-7.30 (m, 19H, H₂+Ar-H), 10.24 (s, 1H, NH); HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₂H₂₈Cl₂N₂NaO₂ 565.1426, found 565.0034.

Ethyl 1-(4-chlorophenyl)-4-(4-chlorophenylamino)-2,6-bis(4-methoxyphenyl)-1,2,5,6tetrahydropyridine-3-carboxylate (4v)⁵

White solid; (Yield 0.802g; 76%); mp 179-181 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm: 1.46 (t, 3H, OCH₂CH₃), 2.67-2.82 (m, 2H, H_{5a} +H_{5b}), 3.75-3.80 (m, 6H, OCH₃), 4.33-4.45 (m, 2H, OCH₂CH₃), 5.05 (brs, 1H, H₆), 6.25-7.07 (m, 17H, H₂+Ar-H) 10.26 (s, 1H, NH); HRMS (ESI): m/z [M+Na]⁺ calc. for C₃₄H₃₂Cl₂N₂NaO₄ 625.1637, found 624.9412.

¹H Spectrum of 4a

Mass Spectrum of 4a

¹H Spectrum of 4b

Mass Spectrum of 4b

¹H Spectrum of 4e (Diasterotropic ratio syn:anti = 10:90)

¹³C Spectrum of 4e

Mass Spectrum of 4e

¹H Spectrum of 4f

Mass Spectrum of 4f

¹H Spectrum of 4h

Mass Spectrum of 4h

24

¹H Spectrum of 4i (Diasterotropic ratio syn:anti = 13:87)

¹³C Spectrum of 4i

Mass Spectrum of 4i

¹H Spectrum of 4j

Mass Spectrum of 4j

¹H Spectrum of 4k

Mass Spectrum of 4k

¹H Spectrum of 4m

¹³C Spectrum of 4m

¹H Spectrum of 4n (Diasterotropic ratio syn:anti = 09:91)

¹³C Spectrum of 4n

Mass Spectrum of 4n

¹H Spectrum of 40

Mass Spectrum of 40

¹H Spectrum of 4q

¹³C Spectrum of 4q

Mass Spectrum of 4q

Mass Spectrum of 4r

¹H Spectrum of 4t

¹H Spectrum of 4u

¹H Spectrum of 4v

Mass Spectrum of 4v

X-Ray Structure of 4o (CCDC 1047298)

Figure S3. Twin molecules in the unit cell of 40

References

- F. I. McGonagle, H. F. Sneddon, C. Jamieson, A. J. B. Watson, ACS Sus. Chem. Eng. 2014, 2 (3), 523–532.
- [2] R. A. Sheldon, *Green Chem.* **2007**, *9*, 1273–1283.
- [3] B. M. Trost, Science 1991, 254, 1471–1477
- [4] A. D. Curzons, D. J. C. Constable, D. N. Mortimer, V. L. Cunningham, *Green Chem.* 2001, *3*, 1–6.
- [5] P. A. Clarke, A. V. Zaytzev, A. C. Whitwood, *Tetrahedron Letters* **2007**, *48*, 5209-5212.
- [6] H.-J. Wang, L.-P. Mo, Z.-H. Zhang, ACS Comb. Sci. 2011, 13, 181.
- [7] A. T. Khan, T. Parvin, L. H. Choudhury, J. Org. Chem. 2008, 73, 8398–8402.
- [8] S. S. Sajadikhah, M. T. Maghsoodlou, N. Hazeri, S. M. Habibi-Khorassani, S. J. Shams-Najafi, *Mon-atsh. Chem.* **2012**, *143*, 939.
- [9] R. Ramachandran, S. Jayanthi, Y. T. Jeong, *Tetrahedron* **2012**, *68*, 363-369.