Supporting Information

Exploitation of a new Schiff-base ligand for boric acid fluorescent sensor in aqueous medium with bio-imaging studies in living plant system

Yeasmin Sarkar,^a Sanju Das,^{a,b} Riddhi Datta,^c Sharmila Chattopadhyay,^c Ambarish Ray^{*b} and Partha Pratim Parui^{*a}

^aDepartment of Chemistry, Jadavpur University, Kolkata 700032, India, Fax: +91-33-24146223, Phone:+91-33-24146666, E-mail: parthaparui@yahoo.com; ^bDepartment of Chemistry, Maulana Azad College, Kolakta 700013, India, Fax: +91-33-22268111, Phone:+91-9836650180, E-mail: r_ambarish@yahoo.co.in; ^cDrug Development Diagnostics & Biotechnology Division, Indian Institute of Chemical Biology, Kolkata 700032, India.

Contents

1. UV-Vis absorption studies of L_1 in presence of PBA	p S2
2. Comparative fluorescence intensity studies of L_1	p S3
3. Fluorescence studies of L_1 in presence of PBA	p S4
4. ¹¹ B NMR Spectra	p S5
5. ESI-MS ⁺	p S6
6. ¹ H NMR and ¹³ C NMR spectra	p S7
7. DFT-optimized geometries	p S8
8. Frontier molecular orbital (FMO) diagram	p S9
9. Theoretically calculated parameters	p S10

1. UV-Vis absorption studies of L₁ in presence of PBA:

Fig. S1 Changes in UV-Vis absorption spectra of L_1 (5 μ M), gradual addition of PBA (0–0.5 mM) in 10 mM HEPES buffer at pH 7.3 at 25°C, are depicted by arrows. Black curve is for L_1 , in absence of PBA.

2. Comparative fluorescence intensity studies of L₁:

Fig. S2 The fluorescence response of L_1 (5 μ M) in acetonitrile (black) and in 10 mM HEPES, pH-7.3 (blue) at 370-nm excitation.

3. Fluorescence studies of L₁ in presence of PBA

Fig. S3 Fluorescence spectra of L_1 (5 μ M) as a function of increasing concentration of PBA (0–0.5 mM) in 10 mM HEPES, pH 7.3 for 370-nm excitation. Black spectra represent without addition of PBA. The gradual increase in intensity for increasing amount of PBA are indicated by the arrow.

Fig. S4 ¹¹B NMR spectra in aqueous buffer medium, pH 7.3 containing 10% D_2O (A) 5 mM boric acid/borate as standard (B) 5 mM boric acid/borate+ L_1 (2 mM)

5. ESI-MS⁺:

Fig. S5 ESI-MS⁺ of for (A) $[L_1+H]^+$ (m/z: obs'd – 233.0726,cal'd – 233.242) and (B) for L_1 in addition of BA, $[BC_{11}O_4N_4H_{14}]^+$ (m/z: obs'd – 277.9687, calc'd – 277.0637) in water.

6. ¹H NMR and ¹³C NMR spectra:

Fig. S6 (A) ¹H-NMR and (B) ¹³C-NMR spectra of L₁ in DMSO-D₆ solvent.

7. DFT-optimized geometries:

Fig. S7 DFT-optimized ground state (S_0) and excited state (S_1) geometries for ligand (L_1 : ground state (S_0) and L^*_1 : first excited state (S_1)) and L_1 +BA (LB: ground state, LB*: first excited state) are shown.

8. Frontier molecular orbital (FMO) diagram:

Fig. S8 Frontier molecular orbital of L_1 (upper panel) and L_1 +BA (lower panel) for the optimized ground states (HOMO, LUMO) and first excited states (S₁) (#HOMO, #LUMO) geometries are shown.

System /state	Transition	energy (ev)	f ¹	Composition ²	Contribution (%)
L/GS	$S_0 \rightarrow S_1$	3.47	0.142	Н→L	100
		4.27	0.623	δH→L	85
L/ES	$S_0 \rightarrow S_1$	2.17	0.112	Н→L	100
	3.00	0.010	δH→L	83	
LB/GS	$S_0 \rightarrow S_1$	3.20	0.100	H→L	100
	3.98	0.269	δH→L	52	
			$^{\delta}H_{-1}\rightarrow L$	26	
LB/ES S ₀ .	$S_0 \rightarrow S_1$	2.45	0.120	H→L	100
		3.52	0.002	δH→L	80

Table S1. Theoretically calculated UV-Vis and fluorescence parameters.

¹ossilator strength

²HOMO (H) to LUMO (L) transition from ground (GS) to its first excited state (ES) and $^{\delta}H\rightarrow L$ represents the higher energy (lower wavelength) excitation.