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Appendix A: Details of the belief propagation equations

We start from the partition function

Z(λp, λs, λx) =
1

M !

∑
e

∏
l<l′

(
δel 6=el′e

λ̃pδq(el;el′ ),p
+λ̃sδq(el;el′ ),s

+λ̃xδq(el;el′ ),x
)
, (A1)

which is a weighted sum over the link configurations e satisfying the perfect matching

constraints. We divided the right hand side by M ! to cancel the overcounting resulted

from different link permutations. For large M , the partition function can be rewritten as

Z(λp, λs, λx) = e(M lnM)φ(λp,λs,λx)

≈
∫
dnpdnsdnxe

(M lnM)[S(np,ns,nx)+λpnp+λsns+λxnx]. (A2)

Here e(M lnM)S(np,ns,nx) is the number of matchings of given densities np,s,x = Np,s,x/N . Note

that the total number of perfect matchings is eln(2M)!−lnM !−M ln 2 which for large M scales as

eM lnM−M(1−ln 2). Moreover, we have λ̃p,s,x = 2 lnM
M−1

λp,s,x.

We will use the Bethe approximation to compute φ(λp, λs, λx), and then by the Legendre

transformation we will obtain the entropy function,

S(n∗p, n
∗
s, n

∗
x) = φ(λp, λs, λx)− λpn∗p − λsn∗s − λxn∗x. (A3)

The values n∗p,s,x are determined by the saddle-point equations,

n∗p = 〈np〉 =
∂φ

∂λp
=

2

M(M − 1)

∑
l<l′

〈δq(el,el′ ),p
〉, (A4)

and similarly for n∗s,x.

The central quantities in the Bethe approximation are the cavity marginals µl→l′(el),

giving the probability of having endpoints el for link l in the absence of interactions and

constraints involving el′ [1, 2]. The cavity marginal µl→l′(el) is obtained by considering the

cavity messages from the other variables µl′′→l(el′′), and the local constraints depending on

the (el, el′′),

µl→l′(el) ∝
∏
l′′ 6=l,l′

∑
el′′ 6=el

e
λ̃pδq(el;el′′ ),p

+λ̃sδq(el;el′′ ),s
+λ̃xδq(el;el′′ ),xµl′′→l(el′′)

 . (A5)

We solve the equations by iteration, starting from random initial marginals and updating

the µl→l′(el) in a random sequential way according to the above equations.
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Having the cavity marginals, the two-link marginals read

µl,l′(el, el′) ∝ δel′ 6=ele
λ̃pδq(el;el′ ),p

+λ̃sδq(el;el′ ),s
+λ̃xδq(el;el′ ),xµl→l′(el)µl′→l(el′). (A6)

The free energy in the Bethe approximation is given by (M lnM)φ =
∑

l ∆φl−
∑

l<l′ ∆φll′−

lnM !, where ∆φl and ∆φll′ are the local free energy shifts [1]. These are the changes in the

free energy after adding the constraints and the energy terms depending on el, and those

that involve (el, el′), namely,

e∆φl =
∑
el

∏
l′ 6=l

∑
el′ 6=el

e
λ̃pδq(el;el′ ),p

+λ̃sδq(el;el′ ),s
+λ̃xδq(el;el′ ),xµl′→l(el′)

 , (A7)

e∆φll′ =
∑
el 6=el′

e
λ̃pδq(el;el′ ),p

+λ̃sδq(el;el′ ),s
+λ̃xδq(el;el′ ),xµl→l′(el)µl′→l(el′). (A8)

Here the links are equivalent, so we rewrite the BP equations as

µ(el) ∝

∑
el′ 6=el

e
λ̃pδq(el;el′ ),p

+λ̃sδq(el;el′ ),s
+λ̃xδq(el;el′ ),xµ(el′)

M−2

. (A9)

Let us represent el by its first endpoint and its length (e, r), then the above equation reads

µ(e, r) ∝ [eλ̃pwp(e, r) + eλ̃sws(e, r) + eλ̃xwx(e, r)]
M−2. (A10)

where

wp(e, r) =
e−1∑
e′=1

2M−e′∑
r′=e+r+1−e′

µ(e′, r′) +
e+r−2∑
e′=e+1

e+r−1−e′∑
r′=1

µ(e′, r′), (A11)

ws(e, r) =
e−2∑
e′=1

e−e′−1∑
r′=1

µ(e′, r′) +
2M−1∑

e′=e+r+1

2M−e′∑
r′=1

µ(e′, r′), (A12)

wx(e, r) =
e−1∑
e′=1

e+r−1−e′∑
r′=e−e′+1

µ(e′, r′) +
e+r−1∑
e′=e+1

2M−e′∑
r′=e+r+1−e′

µ(e′, r′). (A13)

Similarly, we obtain

e∆φl =
2M−1∑
e=1

2M−e∑
r=1

[eλ̃pwp(e, r) + eλ̃sws(e, r) + eλ̃xwx(e, r)]
M−1, (A14)

e∆φll′ =
2M−1∑
e=1

2M−e∑
r=1

µ(e, r)[eλ̃pwp(e, r) + eλ̃sws(e, r) + eλ̃xwx(e, r)]. (A15)

Moreover, we have

〈np〉 = e−∆φll′eλ̃p
2M−1∑
e=1

2M−e∑
r=1

µ(e, r)wp(e, r). (A16)
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1. An alternative representation

We may as well use the matching variables cij ∈ {0, 1}, showing the connectivity of nodes

i and j, to rewrite the partition function A1 as

Z(λp, λs, λx) =
∑
c

∏
i

δ∑
j 6=i cij=1

∏
(ij)<(kl)

ecijckl[λ̃pδq(ij;kl),p+λ̃sδq(ij;kl),s+λ̃xδq(ij;kl),x], (A17)

This representation of the problem is more efficient than the one we used above but the

BP equations are more involved; we have to distinguish between two kinds of BP message

µ(ij)→i(cij) and µ(ij)→(kl)(cij). The former is the probability of cij in absence of the matching

constraint Ii(c∂i) ≡ δ∑
j 6=i cij=1, and the latter is computed in absence of two-link interaction

w(ij),(kl)(cij, ckl) ≡ exp(cijckl[λ̃pδq(ij;kl),p + λ̃sδq(ij;kl),s + λ̃xδq(ij;kl),x]). Here c∂i ≡ {cij : j 6= i}.

The BP equations governing these cavity marginals are

µ(ij)→j(cij) ∝

∑
c∂i\j

Ii(c∂i)
∏
k∈∂i\j

µ(ik)→i(cik)


×

∏
(kl):k,l 6=i,j

(∑
ckl

w(ij),(kl)(cij, ckl)µ(kl)→(ij)(ckl)

)
, (A18)

and

µ(ij)→(kl)(cij) ∝

∑
c∂i\j

Ii(c∂i)
∏
k∈∂i\j

µ(ik)→i(cik)

∑
c∂j\i

Ij(c∂j)
∏
k∈∂j\i

µ(jk)→j(cjk)


×

∏
(k′l′) 6=(kl):k′,l′ 6=i,j

∑
ck′l′

w(ij),(k′l′)(cij, ck′l′)µ(k′l′)→(ij)(ck′l′)

 . (A19)

Similarly, we can compute the one-link marginals µ(ij)(cij) and the two-link marginals

µ(ij),(kl)(cij, ckl).

Appendix B: Details of the minsum equations

Consider a system of interacting site variables σi ∈ {0, 1} for i = 1, . . . , L, with energy

function E(σ) =
∑

i<j Eij(σi, σj), where

Eij(σi, σj) = −[σiσj + (1− σi)(1− σj)] lnαij

− [1− σiσj − (1− σi)(1− σj)] ln(1− αij). (B1)
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The αij are here parameters, giving the probability of having a link connecting sites i, j.

We start from the finite-temperature BP equations for the cavity marginals of the prob-

ability distribution of variable configurations P(σ) ∝ e−βE(σ),

νi→j(σi) ∝
∏
k 6=i,j

(∑
σk

e−βEik(σi,σk)νk→i(σk)

)
. (B2)

This is the probability of state σi for site i in the absence of interaction with site j. It is more

appropriate to work with the cavity fields hi→j ≡ 1
β

ln
(
νi→j(1)

νi→j(0)

)
where the BP equations read

βhi→j =
∑
k 6=i,j

ln
(
e−βEik(1,0) + e−βEik(1,1)+βhk→i(σk)

)
−
∑
k 6=i,j

ln
(
e−βEik(0,0) + e−βEik(0,1)+βhk→i(σk)

)
. (B3)

Now take the limit β →∞ of the above equations. The resulting equations for the cavity

messages hi→j are called minsum equations [2] and read

hi→j =
∑
k 6=i,j

max(ln(1− αik), lnαik + hk→i)−
∑
k 6=i,j

max(lnαik, ln(1− αik) + hk→i). (B4)

We solve the minsum equations for the cavity messages by iteration, starting from random

initial messages. In the end, the local messages hi are obtained like the cavity ones but

considering all the incoming messages from the neighboring variables.

To find a configuration minimizing the energy, we use the reinforcement algorithm [3]: In

each step of updating the cavity messages, we add external fields that polarize the messages

in the direction suggested by the local messages. More precisely, the reinforced minsum

equations read

ht+1
i→j = r(t)hti +

∑
k 6=i,j

max(ln(1− αik), lnαik + htk→i)

−
∑
k 6=i,j

max(lnαik, ln(1− αik) + htk→i). (B5)

Similarly, we update the local messages

ht+1
i = r(t)hti +

∑
k 6=i

max(ln(1− αik), lnαik + htk→i)

−
∑
k 6=i

max(lnαik, ln(1− αik) + htk→i). (B6)

The reinforcement parameter r(t) is zero at the beginning of the algorithm (t = 0) and

grows slowly by t, for example as r(t+ 1) = r(t) + δ.
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Appendix C: More details and figures

Here we present more details of the numerical simulations and figures obtained in this

study.

Figure 1 displays the approximate entropy (logarithm of the number of link configurations

N ) that is obtained within the Bethe approximation. Here we take λx = 0 and report the

entropy in the space of parameters (λp, λs) even if the algorithm does not converges. The

solution to the BP equations A9 is found by iteration and the algorithm converges when

the difference in the BP messages µ(el) in two successive steps of the iteration is less than

a convergence limit ε = 10−8. In the same figure, we observe the region in the parameter

space that the BP algorithm converges. Given the BP messages, the entropy is computed

by Eqs. A3 and A7,A8.

Figures 2, 3, and 4 show the one-link and two-link distributions for more parameter

samples obtained by the BP algorithm as described above. In Fig. 5, we compare the two-

link distance distribution obtained by the approximate algorithm with the exact one for a

small number of links.

In Fig. 6, we compare the reconstructed one-link and two-link distributions with the

observed data from link configurations with a regular sector of size L/2. The inferred

statistics can be improved by iteration using the information obtained in the previous stages

of the algorithm. In the figure, we also compare the model data obtained without any prior

information (a), and with the information provided in the first stage of the algorithm (b).
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FIG. 1. The entropy S = 1
M lnM lnN (N is the number of configurations) obtained by the Bethe

approximation, and the region that the BP algorithm converges (white region). The data are for

M = 40 links and λx = 0. The convergence limit is ε = 10−8.
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FIG. 2. One-link distribution (more precisely M(2M − 1)µ(e, r)) obtained by the Bethe approxi-

mation for different energy parameters λp,s,x with M = 50 links. Here µ(e, r) is the probability of

having a link with the first endpoint e and length r.
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FIG. 3. Two-link length distribution µll′(r, r
′) (multiplied by a constant to make it of order one)

obtained by the Bethe approximation for M = 50 links. Here µll′,q(r, r
′) is the probability of finding

two-links of type q = p, s, x with lengths r and r′. The energy parameters λp,s,x and the average

two-link densities are fixed in each row. The columns are for different types of two-links: p (left),

s (center), and x (right).
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FIG. 4. Two-link distance distribution µll′(d) (multiplied by a constant to make it of order one)

for different energy parameters λp,s,x and different types of two-links (p, s, x), obtained by the

Bethe approximation for M = 50 links. Here µll′,q(d) is the probability of finding two links of type

q = p, s, x at distance d (separation of the first endpoints) from each other.
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FIG. 5. Comparing the average two-link numbers 〈Nll′(d)〉 obtained exactly (top) with those of

the Bethe approximation (bottom) for M = 9 links. Distance d of two links is the separation of

their first endpoints. Each panel shows 〈Nll′(d)〉 for fixed energy parameters λp,s,x but different

types p, s, x.
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FIG. 6. The one- and two-link probability distributions µl(r), µll′,p,s,x(d) obtained by the inverse

algorithm given the average numbers M∗(r), N∗p,s,x(d) extracted from 10000 randomly generated

configurations of M = 20 links in presence of a regular sector of size L/2 in the center of the chain.

Hear r refers to the length of link, and d gives the distance between the first endpoints of two

links. M∗(r) and N∗p,s,x(d) are the average number of links of length r and two-links of distance

d, respectively. Model (a) is obtained by running the inverse algorithm with no prior information

of the sector. To obtain model (b), we run the inverse algorithm with an additional external field

disfavoring some connections according to the one-link probability distribution µl(e, r) provided

by model (a). µl(e, r) is the probability of having a link with first endpoint e and length r.
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