Fabrication of High Power LiNi_{0.5}Mn_{1.5}O₄ Battery Cathodes by

Nanostructuring

Supporting information

Mohammad Ali Kiani^{$\dagger, \ddagger}$, Mohammad Safi Rahmanifar^{||}, Maher F. El-Kady^{δ, \perp}, Richard B. Kaner^{$\delta, *$}, and Mir Fazlollah Mousavi^{$\dagger, \delta, *$}</sup>

†: Department of Chemistry, Tarbiat Modares University, Tehran, Iran.

‡: Chemistry & Chemical Engineering Research Center of Iran

||:Faculty of basic science, Shahed University, Tehran, Iran

[⊥]: Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.

δ: Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.

* Address correspondence to kaner@chem.ucla.edu; mousavi@chem.ucla.edu

Supporting Introduction:

In the $P4_332$ phase, Ni²⁺ ions take the 4b sites and Mn⁴⁺ ions take the 12d sites. On the other hand, in the *Fd3m* phase, both Ni²⁺ and Mn⁴⁺ ions take the 32e sites randomly. At low

temperature an ordered structure, with the $P4_332$ (no oxygen deficiency) space group, and at high temperature a disordered structure with the Fd3m (weak oxygen deficiency) space group is formed ^[1]. Several comparative studies have been carried out on these two structures ^[1-5]. There are conflicting reports about these structures. Some researchers have shown that the Fd3m space group showed better electrochemical behaviors ^[1, 3, 6-9] and others have mentioned that the $P4_332$ structure has better electrochemical behavior as the cathode in Li batteries ^[2, 10-12]. The disordered LNMO has a special electrochemical behavior; the oxygen deficiency leads to the presence of manganese in the Mn(III) oxidation state, which can be oxidized to Mn(IV) at around 4 V ^[6], thus reducing the specific energy and inducing the distortion of the spinel structure. Furthermore, in disordered LNMO, impurities such as NiO and Li_xNi_yO are generally observed. On the other hand, disordered LNMO shows higher electronic conductivity than the ordered stoichiometric phase due to the presence of the Mn^{3+/4+} redox couple and Ni/Mn disordering. Therefore, the preparation of the high energy ordered LNMO structure that also has high specific power (high rate capability) is a big challenge in this research area.

Supporting Scheme:

Scheme S1. Schematic representation of the preparation of LiNi_{0.5}Mn_{1.5}O₄

Supporting Table:

Table S1. Rct $(\Omega.cm^2)$ Fitted Values From EIS for Nano-Particles of LNMO at Different Applied Voltages (vs Li/Li⁺)

Voltage (V)	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
Rct (Ω cm ²)	35	30	27	21	7	11	14	19

	Synthesis method	Space group	Specific capacity (mAh g ⁻¹)	Voltage window (V)	Ref.
1	Solid state reaction	P4 ₃ 32	134 (20 C)	3.0-5.0	[2]
2	Sol–gel	P4 ₃ 32	100 (0.2 mAcm ⁻²)	3.6-5.0	[17]
3	Solid state reaction	P4 ₃ 32	98 (0.2 mAcm ⁻²)	3.6-5.0	[17]
4	Molten salt	Fd3m	138 (0.15 C)	3.5-5.0	[46]
5	Molten salt	P4 ₃ 32	140 (0.15 C)	3.5-5.0	[46]
6	Ultrasonic spray pyrolysis	Fd3m	230 (0.1 C)	2.0-5.0	[63]
7	Ultrasonic spray pyrolysis	P4 ₃ 32	240 (0.1 C)	2.0-5.0	[63]
8	Solid state reaction	Fd3m	120 (0.2 C)	3.5-4.9	[64]
9	Solid state reaction	P4 ₃ 32	90 (0.2C)	3.5-4.9	[64]
10	Resorcinol-formaldehyde assisted	Fd3m	118 (20 C)	3.5-5.0	[52]
11	Resorcinol-formaldehyde assisted	P4 ₃ 32	80 (20 C)	3.5-5.0	[52]
12	Polymer-Assisted Synthesis	-	98 (15 C)	3.5-5.0	[18]
13	Ethylene glycol-assisted	Fd3m	117 (5 C)	3.5-4.9	[21]
14	Sucrose-aided combustion	-	40 (10 C)	3.4-5.2	[22]
15	Spray drying	P4 ₃ 32	134 (0.15 C)	3.0-4.9	[41]
16	Flame synthesis	Fd3m	92 (14.9 mA g ⁻¹)	3.5-4.9	[47]
17	Solid state reaction	P4 ₃ 32	40 (20 C)	3.5-5.0	[65]
18	Ultrasonic-assisted sol-gel	Fd3m	99 (15 C)	3.5-5.0	[66]
19	Sonochemical assisted	P4 ₃ 32	100 (20 C)	4.5-5.0	This Work

Table S2. Comparison of different methods for the synthesis of LNMO as cathode materials.

References

- J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang and Y. K. Sun, *Chem. Mater.*, 2004, 16, 906.
- 2. S. H. Park, S. W. Oh, S. H. Kang, I. Belharouak, K. Amine and Y. K. Sun, *Electrochim. Acta*, 2007, **52**, 7226.
- 3. L. Wang, H. Li, X. Huang and E. Baudrin, *Solid State Ionics*, 2011, **193**, 32.
- 4. X. Y. Feng, C. Shen, X. Fang and C. H. Chen, J. Alloys Compd., 2011, 509, 3623.
- 5. K. M. Shaju and P. G. Bruce, *Dalton Trans.*, 2008, 5471.
- 6. H. Xia, Y. S. Meng, L. Lu and G. Ceder, J. Electrochem. Soc., 2007, 154, A737.
- 7. T. Yang, K. Sun, Z. Lei, N. Zhang and Y. Lang, J. Alloys Compd., 2010, 502, 215.
- 8. M. Kunduraci, J. F. Al-Sharab and G. G. Amatucci, *Chem. Mater.*, 2006, 18, 3585.
- 9. Y.-C. Jin, C.-Y. Lin and J.-G. Duh, *Electrochim. Acta*, 2012, **69**, 45.
- 10. X. Ma, B. Kang and G. Ceder, J. Electrochem. Soc., 2010, 157, A925.
- 11. S. Park and Y. Sun, *Electrochim. Acta*, 2004, **50**, 434.
- K. Ariyoshi, Y. Iwakoshi, N. Nakayama and T. Ohzuku, J. Electrochem. Soc., 2004, 151, A296.