Pentafluorophenyl vinyl sulfonate enables efficient, metal free, radical-based alkene hydroacylation with aldehyde as limiting reagent

Vijay Chudasama*

Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ, UK

Tel: +44 (0)20 7679 2077; E-mail: v.chudasama@ucl.ac.uk

General Experimental

All reagents were purchased from Aldrich or AlfaAesar and were used as received without further purification. Where described below petrol refers to petroleum ether (b.p. 40-60 °C). All reactions were monitored by thin-layer chromatography (TLC) on pre-coated silica gel plates (254 µm). Flash column chromatography was carried out with Kiesegel 60M 0.04/0.063 mm (200–400 mesh) silica gel. ¹H NMR spectra were recorded at 300 MHz, 400 MHz, 500 MHz and 600 MHz and ¹³C NMR at 75 MHz, 100 MHz, 125 MHz and 150 MHz on a Bruker AMX300, AMX400, AMX500 and AMX600 at 21 °C unless otherwise stated. The chemical shifts (δ) for ¹H and ¹³C are quoted relative to residual signals of the solvent on the ppm scale. Coupling constants (J values) are reported in hertz (Hz). Due to the broadness of the 13 C NMR signals in the pentafluorophenyl moiety these peaks have not been assigned. Mass spectra were obtained on a VG70-SE mass spectrometer. Infrared spectra were obtained on a Perkin Elmer Spectrum 100 FTIR Spectrometer operating in ATR mode. Optical rotation was measured using a Perkin Elmer 343 polarimeter. Chiral High Performance Liquid Chromatography (HPLC) was performed on a Varian HPLC instrument equipped with a manual injector, binary pump, and a UV detector (214 nm) using CHIRALCEL® OD column (4.6 mm x 250 mm, 10 µm) from Chiral Technologies (West Chester, PA)

Pentafluorophenyl ethenesulfonate 2¹

SO3PFP

Pentafluorophenol (11.5 g, 62.5 mmol) and NEt₃ (19 mL, 138 mmol) in CH₂Cl₂ (20 mL) was added dropwise over 1 h to a solution at of 2-chloroethane sulfonyl chloride (10.1 g, 62.5 mmol) in CH₂Cl₂ (100 ml) at -78 °C. The mixture was allowed to warm slowly to 21 °C and diluted with CH₂Cl₂ (100 mL) and washed with H₂O (100 mL), 2 M HCl (2 × 100 mL) and sat. NaHCO₃ (2 × 100 mL), dried (MgSO₄) and the solvent removed *in vacuo*. Purification by column chromatography on silica gel (10% Et₂O/petrol) gave ethenesulfonic acid pentafluorophenyl ester **14** as a white solid (14.0 g, 51.0 mmol, 82%): ¹H NMR (300 MHz, CDCl₃) δ 6.80 (dd, *J* = 10.0, 16.5 Hz, 1H), 6.53 (dd, *J* = 0.5, 16.5 Hz, 1H), 6.35 (dd, *J* = 0.5, 10.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 133.2 (CH₂), 131.8 (CH); IR (thin film) 2965, 1652, 1626, 1521 cm⁻¹; LRMS (EI) 274 (100, [M]⁺).

2,4,6-Trichlorophenyl ethenesulfonate¹

*S*O3TCP

To a stirred solution of 2-chloroethane sulfonyl chloride (5.8 mL, 55 mmol) in CH₂Cl₂ (100 mL) at -10 °C was added dropwise, over 90 min, 2,4,6-trichlorophenol (9.9 g, 50 mmol) and NEt₃ (15.6 mL, 110 mmol) in CH₂Cl₂ (50 mL). The mixture was allowed to warm slowly to 21 °C and filtered through a plug of 10% K₂CO₃/silica with CH₂Cl₂ (250 mL). The solvent was removed *in vacuo* and purification by recrystallization (CH₂Cl₂/petrol) gave 2,4,6-trichlorophenyl ethenesulfonate as a white solid (11.6 g, 40.0 mmol, 80% yield): m.p. 53–55 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.39 (s, 2H), 6.92 (dd, 1H, *J* = 10.0, 16.5), 6.55 (dd, 1H, *J* = 1.0, 16.5), 6.26 (dd, 1H, *J* = 1.0, 10.0); ¹³C NMR (126 MHz, CDCl₃) δ 142.0 (C), 134.0 (CH), 133.2 (C), 131.5 (CH₂), 130.8 (C), 129.3 (CH); IR (thin film) 3084, 1563 cm⁻¹; LRMS (CI) 287 (100, [M +H]⁺).

Pentafluorophenyl 3-methylpentane-1-sulfonate 6

SO3PED

¹H NMR (600 MHz, CDCl₃) δ 3.51-3.40 (m, 2H), 2.11-2.05 (m, 1H), 1.87 (dddd, *J* = 19.0, 13.5, 7.5, 5.0 Hz, 1H), 1.61-1.55 (m, 1H), 1.46-1.38 (m, 1H), 1.31-1.24 (m, 1H), 0.98 (d, *J* = 7.5 Hz, 3H), 0.94 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 50.8 (CH₂), 33.1 (CH), 29.3 (CH₂), 28.5 (CH₂), 18.2 (CH₃), 10.7 (CH₃); IR (thin film) 2966, 2880, 1515, 1384, 1178 cm⁻¹; LRMS (CI) 333 (100,[M+H]⁺); HRMS (CI) calcd for C₁₂H₁₄F₅O₃S [M+H]⁺ 333.0584, observed 333.0574.

Pentafluorophenyl undecane-1-sulfonate 7

¹H NMR (500 MHz, CDCl₃) δ 3.46-3.41 (m, 2H), 2.06-2.00 (m, 2H), 1.55-1.47 (m, 2H), 1.40-1.23 (m, 18H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 52.9 (CH₂), 32.0 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 28.9 (CH₂), 28.1 (CH₂), 23.6 (CH₂), 22.8 (CH₂), 14.2 (CH₃); IR (thin film) 2922, 2852, 1519, 1384, 1185 cm⁻¹; LRMS (CI) 431 (100, [M+H]⁺); HRMS (CI) calcd for C₁₉H₂₈F₅O₃S [M+H]⁺ 431.1679, observed 431.1685.

M

_SO₃PFP

Pentafluorophenyl 3-cyano-3-methylbutane-1-sulfonate 8

¹H NMR (600 MHz, CDCl₃) δ 3.66-3.63 (m, 2H), 2.31-2.28 (m, 2H), 1.49 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 121.1 (C), 48.9 (CH₂), 39.0 (C), 34.5 (CH₂), 23.1 (CH3); IR (thin film) 2983, 2234, 1515, 1390, 1184 cm⁻¹; LRMS (CI) 344 (100, [M+H]⁺); HRMS (CI) calcd for C₁₂H₁₁F₅NO₃S [M+H]⁺ 344.0380, observed 344.0386. Compound was inseparable from 2,2,3,3-tetramethylsuccinonitrile.

Typical procedure for the hydroacylation of an alkene

A solution of alkene (1.5 mmol) in benzene (1 mL) was freeze-thaw degassed three times and then stirred under an atmosphere of argon. To this, was added aldehyde (1 mmol) and AIBN (32 mg, 0.20 mmol) and the reaction mixture stirred at 40 °C for 72 h. The solvent was removed *in vacuo* and the crude residue purified as described below to afford the desired ketone sulfonate ester.

Pentafluorophenyl 4-methyl-3-oxohexane-1-sulfonate 3a

Purification by flash column chromatography (30-70% CH₂Cl₂/petrol) gave pentafluorophenyl 4methyl-3-oxohexane-1-sulfonate **3a** as an off-white crystalline solid (230 mg, 0.64 mmol, 64%): ¹H NMR (300 MHz, CDCl₃) δ 3.77-3.73 (m, 2H), 3.21-3.15 (m, 2H), 2.56 (sextet, *J* = 7.0 Hz, 1H), 1.76-1.73 (m, 1H), 1.50-1.48 (m, 1H), 1.15 (d, *J* = 7.0 Hz, 3H), 0.92 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 208.8 (C), 47.9 (CH₂), 47.0 (CH), 34.5 (CH₂), 25.9 (CH₂), 15.7 (CH₃), 11.5 (CH₃); IR (neat) 2962, 1710 cm⁻¹; LRMS (CI) 361 (100, [M+H]⁺); HRMS (CI) calcd for C₁₃H₁₄F₅O₄S [M+H]⁺ 361.0455; observed 361.0459.

2,4,6-Trichlorophenyl 4-methyl-3-oxohexane-1-sulfonate

SO3TCP

Purification by flash column chromatography (10-90% CH₂Cl₂/petrol) gave 2,4,6-trichlorophenyl 4-methyl-3-oxohexane-1-sulfonate as an off-white crystalline solid (78 mg, 0.21 mmol, 21%): ¹H NMR (300 MHz, CDCl₃) δ 7.39 (s, 2H), 3.86-3.82 (m, 2H), 3.24-3.19 (m, 2H), 2.55 (sextet, *J* = 7.0 Hz, 1H), 1.76-1.73 (m, 1H), 1.49-1.45 (m, 1H), 1.13 (d, *J* = 7.0 Hz, 3H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 209.4 (C), 142.0 (C), 133.2 (C), 130.7 (C), 129.3 (CH), 48.8 (CH₂), 48.0 (CH), 34.9 (CH₂), 26.0 (CH₂), 15.9 (CH₃), 11.7 (CH₃); IR (neat) 3081, 2940, 1720, 1561 cm⁻¹; LRMS (CI) 373 (100, [M+H]⁺); HRMS (CI) calcd for C₁₃H₁₆Cl₃O₄S [M+H]+ 372.9835; observed 372.9829.

Pentafluorophenyl 3-oxohexane-1-sulfonate 3b¹

Purification by flash column chromatography (20-70% CH₂Cl₂/petrol) gave pentafluorophenyl 3oxohexane-1-sulfonate **3b** as an off-white crystalline solid (246 mg, 0.71 mmol, 71%): ¹H NMR (300 MHz, CDCl₃) δ 3.77-3.73 (m, 2H), 3.15-3.10 (m, 2H), 2.50 (t, *J* = 7.3 Hz, 2H), 1.71-1.59 (sextet, *J* = 7.3 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 205.0 (C), 47.0 (CH₂), 44.7 (CH₂), 36.0 (CH₂), 17.2 (CH₂), 13.6 (CH₃); IR (neat) 2964, 1716 cm⁻¹; LRMS (CI) 364 (100, [M+NH₄]⁺); HRMS (ES) calcd for C₁₂H₁₅F₅NO₄S [M+NH₄]⁺ 364.0636; observed 364.0636.

Pentafluorophenyl 5-methyl-3-oxohexane-1-sulfonate 3c¹

Purification by flash column chromatography (20-70% CH₂Cl₂/petrol) gave pentafluorophenyl 5methyl-3-oxohexane-1-sulfonate **3c** as an off-white crystalline solid (245 mg, 0.68 mmol, 68%): ¹H NMR (300 MHz, CDCl₃) δ 3.78-3.73 (m, 2H), 3.14-3.09 (m, 2H), 2.40 (d, *J* = 6.9, 2H), 2.18 (septet, *J* = 6.7, 1H), 0.95 (d, *J* = 6.6, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 204.7 (C), 51.7 (CH₂), 47.0 (CH₂), 36.5 (CH₂), 24.7 (CH), 22.5 (CH₃); IR (neat) 2964, 1720 cm⁻¹; LRMS (CI) 378 (100, [M+NH₄]⁺); HRMS (ES) calcd for C₁₃H₁₃F₅NO₄S [M+NH₄]⁺.378.0793; observed 378.0796.

SO3PFP

Pentafluorophenyl 3-oxooctane-1-sulfonate 3d

Purification by flash column chromatography (20-70% CH₂Cl₂/petrol) gave pentafluorophenyl 3oxooctane-1-sulfonate **3d** as white crystals (269 mg, 0.72 mmol, 72%): ¹H NMR (500 MHz, CDCl₃) δ 3.78-3.74 (m, 2H), 3.15-3.11 (m, 2H), 2.51 (t, *J* = 7.5 Hz, 2H), 2.16 (sextet, *J* = 7.5 Hz, 2H), 1.65-1.62 (m, 2H), 1.33-1.27 (m, 4H), 0.90 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 205.1 (C), 47.1 (CH₂), 42.8 (CH₂), 36.0 (CH₂), 31.3 (CH₂), 23.4 (CH₂), 22.4 (CH₂), 13.9 (CH₃); IR (solid) 2937, 2871, 1721 cm⁻¹; LRMS (CI) 375 (100, [M+H]⁺); HRMS (CI) calcd for C₁₄H₁₆F₅O₄S [M+H]⁺ 375.0690; observed 375.0685.

Pentafluorophenyl 3-cyclohexyl-3-oxopropane-1-sulfonate 3e¹

Purification by flash column chromatography (20-70% CH₂Cl₂/petrol) gave pentafluorophenyl 3cyclohexyl-3-oxopropane-1-sulfonate **3e** as an off-white solid (235 mg, 0.61 mmol, 61%): ¹H NMR (400 MHz, CDCl₃) δ 3.76-3.72 (m, 2H), 3.20-3.16 (m, 2H), 2.45 (tt, *J* = 3.5, 11.0, 1H), 1.97-1.64 (m, 5H), 1.48-1.15 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 208.1 (C), 50.8 (CH), 47.2(CH₂), 34.1 (CH₂), 28.4 (CH₂), 25.7 (CH₂), 25.5 (CH₂); IR (neat) 2934, 2855, 1706 cm⁻¹; LRMS (CI) 404 (100%, [M+NH₄]⁺); HRMS (ES) calcd for C₁₅H₁₅F₅NO₄S [M+NH₄]⁺.404.0949; observed 404.0949.

Pentafluorophenyl 4-ethyl-3-oxooctane-1-sulfonate 3f¹

Purification by flash column chromatography (20-70% CH₂Cl₂/petrol) gave pentafluorophenyl 4-ethyl-3-oxooctane-1-sulfonate **3f** as a colourless oil (241 mg, 0.60 mmol, 60%): ¹H NMR (400 MHz, CDCl₃) δ 3.76-3.71 (m, 2H), 3.15-3.10 (m, 2H), 2.47 (tt, *J* = 5.5, 8.0 Hz, 1H), 1.68-1.63 (m, 2H), 1.58-1.47 (m, 2H), 1.34-1.27 (m, 2H), 1.27-1.20 (m, 2H), 0.88 (t, *J* = 7.5 Hz, 3H), 0.85 (t, *J* = 7.5 Jz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.9 (C), 54.0 (CH), 47.1 (CH₂), 35.6 (CH₂), 30.9 (CH₂), 29.6 (CH₂), 24.6 (CH₂), 22.8 (CH₂), 13.8 (CH₃), 11.7 (CH₃); IR (neat) 2934, 2962, 2875, 1714 cm⁻¹; LRMS (CI) 420 (14, [M+NH₄]⁺), 172 (100); HRMS (ES) calcd for C₁₆H₂₃F₅NO₄S [M+NH₄]⁺ 420.1262; observed 420.1265.

Purification by flash column chromatography (20-70% CH₂Cl₂/petrol) gave pentafluorophenyl 3oxododecane-1-sulfonate **3g** as white crystals (301 mg, 0.70 mmol, 70%): ¹H NMR (500 MHz, CDCl₃) δ 3.75 (t, *J* = 7.5 Hz, 2H), 3.13 (t, *J* = 7.5 Hz, 2H), 2.51 (t, *J* = 7.5 Hz, 2H), 1.61 (t, *J* = 7.0 Hz, 2H), 1.29-1.21 (m, 12H), 0.87 (t, *J* = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 205.1 (C), 47.0 (CH₂), 42.8 (CH₂), 35.9 (CH₂), 31.9 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 23.7 (CH₂), 22.7 (CH₂), 14.1 (CH₃); IR (solid) 2954, 2918, 2849, 1710 cm⁻¹; LRMS (CI) 431 (100, [M+H]⁺); HRMS (CI) calcd for C₁₈H₂₄F₅O₄S [M+H]⁺ 431.1310; observed 431.1307.

Pentafluorophenyl 4-methyl-3-oxopentane-1-sulfonate 3h¹

Purification by flash column chromatography (20-70% CH₂Cl₂/petrol) gave pentafluorophenyl 4methyl-3-oxopentane-1-sulfonate **3h** as a colourless oil (215 mg, 0.62 mmol, 62%): ¹H NMR (400 MHz, CDCl₃) δ 3.78-3.74 (m, 2H), 3.21-3.18 (m, 2H), 2.71 (septet, *J* = 7.0 Hz, 1H), 1.18 (d, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 208.8 (C), 47.3 (CH₂), 41.1 (CH), 33.8 (CH₂), 18.2 (CH₃); IR (neat) 2976, 1716 cm⁻¹; LRMS (CI) 364 (100, [M+NH₄]⁺); HRMS (ES) calcd for C₁₂H₁₅F₅NO₄S [M+NH₄]⁺.364.0636; observed 364.0635.

Pentafluorophenyl 4,4-dimethyl-3-oxopentane-1-sulfonate 3i¹

SO3PED

Purification by flash column chromatography (20-70% CH₂Cl₂/petrol) gave pentafluorophenyl 4,4-dimethyl-3-oxopentane-1-sulfonate **3i** as an off-white solid (184 mg, 0.51 mmol, 51%): ¹H NMR (300 MHz, CDCl₃) δ 3.76-3.71 (m, 2H), 3.25-3.20 (m, 2H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 210.4 (C), 47.5 (CH₂), 44.3 (C), 30.8 (CH₂), 26.3 (CH₃); IR (neat) 2971, 1710 cm⁻¹; LRMS (CI) 378 (100, [M+NH₄]⁺); HRMS (ES) calcd for C₁₃H₁₇F₅NO₄S [M+NH₄]⁺ 378.0793; observed 378.0797.

Pentafluorophenyl 6-(5,5-dimethyl-1,3-dioxan-2-yl)-3-oxohexane-1-sulfonate 3j²

Purification by flash column chromatography (20-95% CH₂Cl₂/petrol) gave pentafluorophenyl 6-(5,5-dimethyl-1,3-dioxan-2-yl)-3-oxohexane-1-sulfonate **3j** as an oil (281 mg, 0.61 mmol, 61%): ¹H NMR (600 MHz, CDCl₃) δ 4.42 (t, *J* = 4.5 Hz, 1H), 3.77-3.75 (m, 2H), 3.58 (d, *J* = 11.0 Hz, 2H), 3.40 (d, *J* = 11.0 Hz, 2H), 3.14-3.11 (m, 2H), 2.57 (t, *J* = 7.0 Hz, 2H), 1.80-1.75 (m, 2H), 1.67-1.63 (m, 2H), 1.17 (s, 3H), 0.72 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.8 (C), 101.8 (CH), 47.1 (CH₂), 42.5 (CH₂), 36.0 (CH₂), 33.9 (CH₂), 30.3 (C), 23.1 (CH₃), 22.0 (CH₃), 18.2 (CH₂); IR (neat) 2953, 2857, 1718, 1520 cm⁻¹; LRMS (CI) 461 (100, [M+H]⁺); HRMS (CI) calcd for C₁₈H₂₂F₅O₆S [M+H]⁺ 461.1052; observed 461.1058.

Pentafluorophenyl 9-hydroxy-5,9-dimethyl-3-oxodecane-1-sulfonate 3k²

/ \	∽ ∽ ∽ `SO₂PFP

Purification by flash column chromatography (20% EtOAc/petrol) gave pentafluorophenyl 9hydroxy-5,9-dimethyl-3-oxodecane-1-sulfonate **3k** as an oil (285 mg, 0.64 mmol, 64%): ¹H NMR (600 MHz, CDCl₃) δ 3.79-3.75 (m, 2H), 3.15-3.11 (m, 2H), 2.53 (dd, *J* = 16.0, 6.0 Hz, 1H), 2.35 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.11-2.04 (m, 1H), 1.50-1.19 (m, 13H), 0.93 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.8 (C), 71.0 (C), 50.1 (CH₂), 46.9 (CH₂), 43.8 (CH₂), 37.2 (CH₂), 36.5 (CH₂), 29.4 (CH₃), 29.3 (CH₃), 29.2 (CH), 21.6 (CH₂), 19.8 (CH₃); IR (neat) 3417, 2968, 1718, 1518, 1383 cm⁻¹; LRMS (FAB) 469 (100, [M+Na]⁺); HRMS (FAB) calcd for C₁₈H₂₃F₅O₅SNa [M+Na]⁺ 469.1084; observed 469.1090.

Pentafluorophenyl (E)-3-oxooct-4-ene-1-sulfonate 3m

Purification by flash column chromatography (20-95% CH₂Cl₂/petrol) gave pentafluorophenyl (*E*)-3-oxooct-4-ene-1-sulfonate **3m** as an oil (201 mg, 0.54 mmol, 54%). ¹H NMR (600 MHz, CDCl₃) δ 6.98 (dt, *J* = 15.5, 7.0 Hz, 1H), 6.18 (d, *J* = 15.5 Hz, 1H), 3.84-3.78 (m, 2H), 3.33-3.28 (m, 2H), 2.28-2.23 (m, 2H), 1.55 (sextet, *J* = 7.4 Hz, 2H), 0.97 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 194.0 (C), 150.0 (CH), 129.2 (CH), 47.2 (CH₂), 34.6 (CH₂), 33.3 (CH₂), 21.2 (CH₂), 13.7 (CH₃); IR (thin film) 3064, 2964, 1723, 1634 cm⁻¹; LRMS (CI) 373 (100, [M+H]⁺); HRMS (CI) calcd for C₁₄H₁₄F₅O₄S [M+H]⁺ 373.0455; observed 373.0459.

Pentafluorophenyl 3-(4-fluorophenyl)-3-oxopropane-1-sulfonate 3n²

Purification by flash column chromatography (20-95% CH₂Cl₂/petrol) gave pentafluorophenyl 3-(4-fluorophenyl)-3-oxopropane-1-sulfonate **3n** as a white solid (255 mg, 0.64 mmol, 64%). m.p. 102-105 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.06-8.03 (m, 2H), 7.23-7.19 (m, 2H), 3.97-3.94 (m, 2H), 3.75-7.71 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 192.7 (C), 166.3 (d, *J*_{C-F} = 255.0 Hz, C), 131.8 (C), 130.9 (d, *J*_{C-F} = 13.5 Hz, CH), 116.2 (d, *J*_{C-F} = 22.5 Hz, CH), 47.4 (CH₂), 32.6 (CH₂); IR (solid) 3069, 2960, 1684, 1381 cm⁻¹; LRMS (CI) 399 (100, [M+H]⁺); HRMS (CI) calcd for C₁₅H₉F₆O₄S [M+H]⁺ 399.0126; observed 399.0120.

Pentafluorophenyl 3-phenyl-3-oxopropane-1-sulfonate 3o

Purification by flash column chromatography (20-95% CH₂Cl₂/petrol) gave pentafluorophenyl 3-phenyl-3-oxopropane-1-sulfonate **30** as an oil (232 mg, 0.61 mmol, 61%). ¹H NMR (600 MHz, CDCl₃) δ 8.02-7.98 (m, 2H), 7.67-7.62 (m, 1H), 7.54-7.50 (m, 2H), 3.97-3.94 (m, 2H), 3.75-7.71 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 194.3 (C), 166.3 (d, $J_{C-F} = 255.0$ Hz, C), 135.6 (C), 134.3 (C), 129.1 (CH), 128.2 (CH), 47.6 (CH₂), 32.7 (CH₂); IR (solid) 3064, 2958, 1694 cm⁻¹; LRMS (CI) 381 (100, [M+H]⁺); HRMS (CI) calcd for C₁₅H₁₀F₅O₄S [M+H]⁺ 381.0142; observed 381.0147.

(S)-2-Methylbutanal 1p³

A two-necked flask was fitted with a pressure-equalising dropping funnel and a thermometer. The flask was charged with (S)-2-methylbutanol (13.5 mL, 11.0 g, 0.13 mol), 2,2,6,6-tetramethylpiperidin-1-oxyl (200 mg, 1.30 mmol), CH₂Cl₂ (40 mL), and a solution of KBr (1.48 g, 0.013 mol) in H₂O (6 mL). The reaction mixture was vigorously stirred and cooled to -10 °C, then was added aqueous NaOCl (2.4 M, 115 mL, 0.14 mol, pH 9.5) over 20 min, keeping the temperature of the reaction mixture between 10 and 15 °C. The mixture was stirred for a further 15 min, the orange organic phase was separated and the aqueous phase extracted with CH_2Cl_2 (15 mL). The combined organic extracts were washed with 10% aqueous HCl (50 mL) containing KI (0.40 g, 0.03 mol), 10% aqueous Na₂S₂O₃ (50 mL) and H₂O (30 mL). The organic phase was dried over MgSO₄ and then distilled at atmospheric pressure through a 20 cm Vigreux distillation column to give (S)-2-methylbutanal **1n** as a colourless oil (7.3 g, 75 mmol, 62%): b.p. 90-91 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.59 (d, J = 2.0 Hz, 1H), 2.24 (sextet of doublets, J = 7.0 and 2.0 Hz, 1H), 1.75-1.67 (m, 1H), 1.45-1.36 (m, 1H), 1.05 (d, J = 7.0 Hz, 3H), 0.91 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 205.4 (C), 47.8 (CH), 23.5 (CH₂), 12.9 (CH₃), 11.3 (CH₃); IR (thin film) 2970, 2938, 2878, 1705 cm⁻¹; LRMS (CI) 87 (30, [M+H]⁺), 74 (100); HRMS (CI) calcd for $C_5H_{11}O [M+H]^+ 87.0804$, observed 87.0809; $[\alpha]_D = +35.0$ (c 2.44, Acetone, 21.0 °C), Lit. $[\alpha]_{D} = +35.5$ (c 2.50, Acetone, 20.0 °C).³

Pentafluorophenyl (4S)-4-methyl-3-oxohexane-1-sulfonate 3p²

Purification by flash column chromatography (20-70% CH₂Cl₂/petrol) gave pentafluorophenyl (4*S*)-4-methyl-3-oxohexane-1-sulfonate **3p** as a colourless oil (223 mg, 0.62 mmol, 62%): ¹H NMR (400 MHz, CDCl₃) δ 3.79-3.73 (m, 2H), 3.24-3.14 (m, 2H), 2.57 (sextet, *J* = 7.5 Hz, 1H), 1.75 (doublet of quintets, *J* = 14.0 and 7.5 Hz, 1H), 1.48 (doublet of quintets, *J* = 14.0 and 7.5 Hz, 1H), 1.16 (d, *J* = 7.5 Hz, 3H), 0.92 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 208.8 (C), 47.9 (CH), 47.1 (CH₂), 34.5 (CH₂), 25.9 (CH₂), 15.7 (CH₃), 11.5 (CH₃); IR (solid) 2970, 2940, 1716, 1516, 1384, 1184 cm⁻¹; LRMS (CI) 361 (100, [M+H]⁺); HRMS (CI) calcd for C₁₃H₁₄F₅O₄S [M+H]⁺ 361.0533, observed 361.0526; [α]_D = +9.70 (c 18.0, CHCl₃, 22.5 °C), Lit. [α]_D = +9.76 (*c* 18.9, CHCl₃, 23.5 °C).² HPLC conditions: CHIRALCEL-OD column, hexane:*i*-PrOH 97:3, 1.2 mL/min, t_R (minor) = 12.7 min, t_R (major) = 16.1 min, 97% ee.

NMRs are identical to that observed for pentafluorophenyl 4-methyl-3-oxohexane-1-sulfonate 3a.

References

- 1. R. J. Fitzmaurice, J. M. Ahern and S. Caddick, Org. Biomol. Chem. 2009, 7, 235-237.
- 2. V. Chudasama, A. R. Akhbar, K. A. Bahou, R. J. Fitzmaurice and S. Caddick, *Org. Biomol. Chem.*, 2013, **11**, 7301-7317.
- 3. P. L. Anelli, F. Montanari and S. Quici, Org. Synth., 1990, 69, 212-214.