Supporting Information

In situ growth ZnO nanorod arrays on cotton cloth for the removal of uranium (VI)

Lei Zhang, ^a Liang Zhang, ^a Tianhao Wu, ^c Xiaoyan Jing, ^a Rumin Li, ^a Jingyuan Liu, ^a Qi Liu ^{*a} and Jun Wang^{*ab}

^a Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001, PR China.

^b Institute of Advanced Marine Materials, Harbin Engineering University, 150001, PR China.

^c Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, 150001, PR China.

* Corresponding author: Tel.: +86 451 8253 3026; Fax: +86 451 8253 3026; E-mail: zhqw1888@sohu.com.

Number	1	2	3
Weight of cotton cloth modified with zinc oxide seeded sol	0.037	0.039	0.034
(g)			
Weight of ZnO/CC (g)	0.049	0.051	0.048
Weight of ZnO/CC after ultrasound (g)	0.047	0.050	0.046

Tab S1 The change in weight of ZnO/CC after ultrasound.

Tab.S2 Comparison of saturated adsorption capacity in the parallel experiment (m=0.010g, C_0 =250.00 mg L⁻¹, pH=5.0, T=298K)

	Q _e (mg g ⁻¹)
Pure cotton cloth	35.21 (±0.50)
ZnO/CC grown without seeding	87.60 (±0.50)
ZnO/CC	428.76 (±0.50)

Tab S3 Isotherm parameters for the adsorption uranium (VI) onto ZnO/CC.

Langmuir constants			Freundlich constants			
T (K)	$Q_m (mg g^{-1})$	$K_L (L g^{-1})$	R ²	$K_F (L g^{-1})^{1/n}$	1/n	R ²
298	431.03	1.79	0.99	340.32	0.050	0.77
308	444.44	1.79	0.99	350.21	0.051	0.85
318	460.83	2.68	0.99	373.56	0.047	0.88
328	476.19	3.31	0.99	399.65	0.093	0.95

Tab S4Thermodynamic parameter for uranium adsorption on ZnO/CC.

ΔH^0 (kJ mol ⁻¹)	ΔS^0 (J mol ⁻¹ ·K ⁻¹)	ΔG^0 (kJ mol ⁻¹)			
		298 K	308 K	318 K	328 K
20.26	86.98	-5.66	-6.53	-7.40	-8.27

Tab S5 Kinetic parameters of different models for uranium (VI) adsorption	n onto ZnO/CC.
--	----------------

Kinetic model	T(K)	C ₀ (mg L ⁻¹)	Q _{cal} (mg g ⁻¹)	k_1 (min ⁻¹)	R ²
				$k_2(g \bullet mg^{-1}min^{-1})$	
Pseudo-first-order	298	200.00	487.01	0.13340	0.91
Pseudo-second-order	298	200.00	453.55	0.00032	0.99

Adsorbents	Conditions	Maximum	Ref.
		adsorption	
		capacity	
Functionalized carbon spheres	C _{initial} =1-100 mg L ⁻¹ pH=4.0	113.16 mg g ⁻¹	[38]
CoFe ₂ O ₄ hollow spheres	C _{initial} =20-140 mg L ⁻¹ T=298 K pH=6.0	170.07 mg g ⁻¹	[39]
Magnetic yolk-shell iron oxide	$C_e = 1 \times 10^{-6} \cdot 2 \times 10^{-5} \text{ mol } L^{-1}$	1.51×10 ⁻⁵ mol	[40]
@ magnesium silicate microspheres	T=318 K pH=5.5	\mathbf{g}^{-1}	
	C [NaClO ₄]=0.01 mol L ⁻¹	-	
Graphene oxide-supported chitosan	C initial=10-60 mg L ⁻¹	225.78 mg g ⁻¹	[41]
	T=303 K pH=4.0		
Mg ₂ CO ₃ (OH) ₂ /CC	C initial=20-220 mg L-1	370 mg g ⁻¹	[10]
	T=298K pH=5.0		
Hydrothermal carbon	C initial=10-90 mg L ⁻¹	273 mg g ⁻¹	[42]
	T=298 K pH=7.92		
CaAl double hydroxides	C _{initial} =10-500 mg L^{-1}	257 mg g ⁻¹	[43]
	T=298 K pH=6.0		
Nanoporous ZnO	C initial=20-80 mg L ⁻¹	1111 mg g ⁻¹	[22]
by microwave-assisted	T=303 K pH=5.0		
1.0PANI/GO	$C_{eq}=0-80 \text{ mg } L^{-1}$	1960 mg g ⁻¹	[44]
	T=293 K pH=5.0		
	$C [NaCl] = 0.01 \text{ mol } L^{-1}$		
ZnO/CC	C _{initial} =100-350 mg L^{-1}	431.03 mg g ⁻¹	Our
	T=298 K pH=5.0		work

Tab. S6 The maximum adsorption capacity of different adsorbents for uranium (VI).

Tab. S7 The analyzed and calculated concentrations of zinc (II) at different contact times.

Different contact time (min)	10	20	30	40
$C [Zn^{2+}] (mg L^{-1})$	14.37	19.13	21.31	22.03
$n [Zn^{2+}+2H^+] (mol)$	0.611	0.814	0.907	0.921

Fig. S1 The change in color of pure cotton cloth and ZnO/CC at different pH.

Fig. S2 The adsorption capacity with the reuse cycle.