Electronic supporting information

Carbocationic polymerization of isoprene using cumyl initiators: progress in

understanding side reactions

Samira Ouardad^a, Anne-Laure Wirotius^a, Sergei V. Kostjuk^b, François Ganachaud^c, Frédéric

 $Peruch^a$

^a Univ. Bordeaux, CNRS, INP Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France.

^b Research Institute for Physical Chemical Problems of the Belarusian State University,

220030 Minsk, Belarus

^c Univ Lyon, CNRS, INSA-Lyon, IMP, UMR5223, F-69621 Villeurbanne, France

Figure S1: ¹H NMR spectra of cumyl chloride, cumyl ether and α -methylstyrene. (from top to bottom)

(a) IP/cumylCl/B(C_6F_5)₃ 75/1/2, [IP] = 2M, CH₂Cl₂/methylcyclohexane 100/0

Figure S2: Maldi-TOF MS spectra of oligoisoprenes obtained by the system $IP/CumylCl/B(C_6F_5)_3/d^tBP$ at 20°C.

Figure S3: Typical HSQC NMR spectrum of the polyisoprene obtained with IP/CumylOCH₃/TiCl₄/d^tBP system.

Figure S4: SEC spectra of polyisoprenes obtained varying IP/CumylOCH₃/TiCl₄ ratio.

Figure S5: ¹H NMR spectrum of the polyisoprene obtained with IP/cumylOCH₃/TiCl₄/d^tBP systems.

Figure S6: JMOD NMR spectrum of the polyisoprene obtained with $IP/cumylOCH_3/TiCl_4/d^tBP$ system.

Figure S7: TOCSY NMR spectrum of the polyisoprene obtained with $IP/cumylOCH_3/TiCl_4/d^tBP$ system.

Figure S8: NOESY NMR spectrum of the polyisoprene obtained with $IP/cumylOCH_3/TiCl_4/d^tBP$ system.

Figure S9: COSY NMR spectrum of the polyisoprene obtained with $IP/cumylOCH_3/TiCl_4/d^tBP$ system.

Figure S10: HMBC NMR spectrum of the polyisoprene obtained with $IP/cumylOCH_3/TiCl_4/d^tBP$ system.