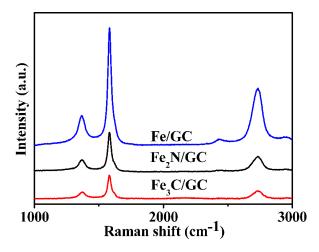
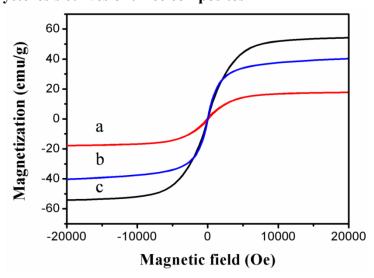
Electronic Supplementary Information (ESI)

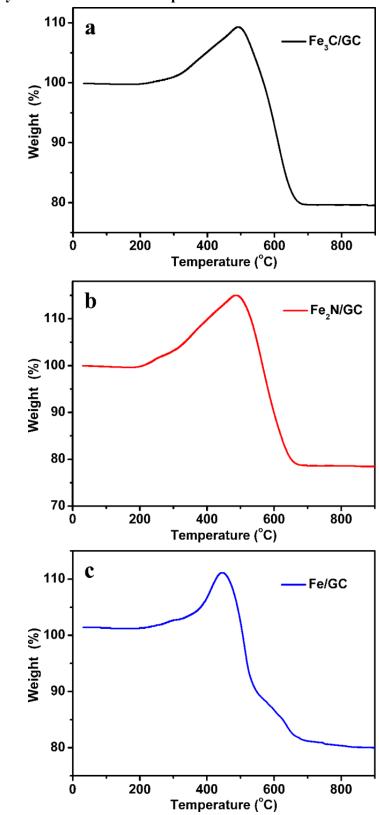
A novel Fe₃C/graphitic carbon composite for electromagnetic wave absorption properties in C-band

Buhe Bateer^{a,b}, Lei Wang^{a,*}, Lu Zhao^a, Peng Yu^a, Chungui Tian^a, Kai Pan^a, Honggang Fu^{a,*}

- ^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, 74 Xuefu Road, Nangang District, Harbin 150080, PRChina
- ^b College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, 999 Hongqi Street, Xiangfang District, Harbin 150050, PR China

1. Raman spectra of three composites


Fig. S1. Raman spectra of (a) Fe₃C/GC, (b) Fe/GC and (c) Fe₂N/GC composites.

2. Magnetic hysteresis curves of three composites

Fig. S2. Magnetic hysteresis curves of the composite at 300K: (a) Fe₃C/GC, (b) Fe₂N/GC and (c) Fe/GC.

3. TG analyses results of three samples

Fig. S3. TG curves of the (a) Fe₃C/GC, (b) Fe/GC and (c) Fe₂N/GC composites tested in air.

 Table S1 TG analyses results derived from Fig. S3.

Sample	Final residual mass	Fe content	Iron species	GC content
	after TG tests	(%)	content	(%)
	(Fe ₂ O ₃ , %)			
Fe ₃ C/GC	79.6	55.7	59.7 % Fe₃C	40.3
Fe ₂ N/GC	78.5	55.0	61.9 % Fe ₂ N	38.1
Fe/GC	79.8	55.9	55.9 % Fe	44.1