Modeling EPR parameters of nitrogen containing conjugated radical cations

Laura Hermosilla, Paloma Calle, José Manuel García de la Vega

Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

SUPPLEMENTARY INFORMATION:

	pg.
Table S1. Theoretical $a_{iso}(^{1}\text{H})$ of the conjugated radical cations at the following levels: PBE0/N07D, B3LYP/6-31G*, B3LYP/N07D, B3LYP/TZVP, and B3LYP/EPR-III	2 - 4
Figure S1 . Plot of theoretical <i>vs</i> experimental <i>a</i> _{iso} (¹⁴ N) of the conjugated radical cations, calculated at the following levels: PBE0/N07D, B3LYP/6-31G*, B3LYP/N07D, B3LYP/ TZVP, and B3LYP/EPR-III	5
Figure S2 . Plot of theoretical <i>vs</i> experimental <i>a</i> _{iso} (¹ H) of the conjugated radical cations, calculated at the following levels: PBE0/N07D, B3LYP/6-31G*, B3LYP/N07D, B3LYP/TZVP, and B3LYP/EPR-III	6
Figure S3 . Absolute and relative deviation of the calculated <i>a</i> _{iso} (¹⁴ N) of the conjugated radical cations computed at the following levels: PBE0/N07D, B3LYP/6-31G*, B3LYP/N07D, B3LYP/TZVP, and B3LYP/EPR-III	7
Table S2. Regression analysis for predictions of ¹ H hfccs	8
Figure S4. Plot of selected NBO of radicals 43, 46 and 47	9
Figure S5. Plot of N atomic contributions to positive density deformations of radicals 43 , 46 and 47 , computed at B3LYP/cc-pVTZ level of theory	10
Figure S6. Plot of spin densities of radicals 43 , 46 and 47 , computed at PBE0/N07D level of theory	11

Table S1. Theoretical isotropic hyperfine coupling constants (G) of ¹H nuclei of the conjugated radical cations at the following levels: PBE0/N07D, B3LYP/6-31G*, B3LYP/N07D, B3LYP/TZVP, and B3LYP/EPR-III. All calculations were carried out on the geometries optimized at B3LYP/6-31G*.

			_				
		PBE0		_			
no.	nuclei	N07D	6-31G*	N07D	TZVP	EPR-III	aiso (exptl.)a
1	H_1	+1.3	+1.1	+1.1	+1.1	+1.1	0.9
	H3,4	-2.8	-3.1	-3.1	-2.9	-3.0	3.6
	6Hβ	+15.8	+16.9	+17.0	+16.9	+18.2	16.0
2	H3,4	-3.0	-3.2	-3.2	-3.0	-3.2	3.4
	$6H_{\beta}$	+15.4	+16.5	+16.6	+16.4	+17.8	16.0
	3H _{β'}	-2.1	-1.9	-1.9	-1.9	-2.0	1.5
3	H1,4	-9.4	-10.3	-10.1	-9.7	-9.8	7.94
	H2,3,5,6	-3.3	-3.7	-3.7	-3.4	-3.4	3.13
4	H2,3,5,6	-2.9	-3.2	-3.2	-2.9	-3.0	2.85
-	<u>6H</u> β	+/.9	+8.5	+8.3	+8.1	+8.8	8.03
5	H _{1,4}	-8.4	-9.1	-8.9	-8.0	-8.0	/.1/
	H2,3	-3.7	-4.0	-4.0	-3./	-3.8	5.99 0.75
	H5,8	=0.4 _1.6	=0.3 _1.7	=0.3 _1.7	-0.5	-0.3 -1.7	0.75
6	H _{2.2}	_3.4	_3.8		_3.4	_3 5	3 70
Ū	H _{2,3}	-0.7	-0.7	-0.7	-0.7	-0.7	0.92
	H67	-1.5	-1.6	-1.6	-1.5	-1.6	1 42
	6Нв	+6.8	+7.1	+7.0	+6.9	+7.4	6.90
7	H15	-3.7	-4.2	-4.1	-3.9	-3.9	3 37
	H _{2.6}	-5.4	-5.6	-5.5	-5.2	-5.4	4.64
	H3,7	-0.5	-0.7	-0.7	-0.7	-0.8	1.08
	H4,8	-6.6	-6.9	-6.8	-6.2	-6.4	6.25
8	H2,6	-4.7	-4.9	-4.9	-4.5	-4.7	4.34
	H _{3,7}	-0.9	-1.1	-1.1	-1.1	-1.1	1.30
	H4,8	-6.2	-6.6	-6.5	-5.9	-6.1	6.02
-	6Hβ	+2.2	+2.4	+2.3	+2.3	+2.4	2.21
9	H _{1,4,5,8}	-0.3	-0.4	-0.4	-0.3	-0.3	0.66
	H2,3,6,7	-1.8	-1.9	-1.9	-1.8	-1.9	1.71
- 10	H9,10	-7.3	-7.9	-/.8	-7.4	-7.5	6.49
10	H1,4,5,8	-0.4	-0.5	-0.5	-0.5	-0.5	0.62
	H2,3,6,7	-1.7	-1.8	-1.8	-1./	-1.8	1.38
11	0Hβ U	+3.7	+3.9	+3.9	+3.8	+0.3	2.20
11	H4 42	-1.1 -2.1	-1.2 -2.2	-1.2 -2.1	-1.1	-1.2 -2.1	2.59
	114,4 Hs s ²	-2.1	-2.2 -3.4	-2.1 -3.4	-2.0	_3 2	2.81
	H6.6'	+0.003	-0.1	-0.1	-0.1	-0.1	0.23
	2HB	+22.2	+23.7	+23.4	+22.7	+24.4	24.24
12	H _{3.3} ,	-0.6	-0.8	-0.8	-0.7	-0.8	2.54^{b}
	H4,4'	-2.7	-2.9	-2.8	-2.6	-2.7	0.58^{b}
	H5,5'	-2.8	-3.1	-3.0	-2.8	-2.9	2.89
	H6,6'	-0.5	-0.6	-0.6	-0.5	-0.5	0.36
	$2H_{\beta}/2H_{\beta}$	+1.3/+5.3	+1.4/+5.6	+1.4/+5.5	+1.4/+5.4	+1.5/+5.8	6.98 ^c
13	$H_{1,1}$,	-4.7	-5.2	-5.0	-4.8	-4.9	4.06
	H2,2',6,6'	-1.8	-2.0	-2.0	-1.8	-1.8	1.61
	H3,3',5,5'	-1.4	-1.6	-1.5	-1.4	-1.4	1.45
14	H2,2',6,6'	-1.4	-1.6	-1.6	-1.5	-1.5	1.33
	H3,3',5,5'	-1.5	-1./	-1.0	-1.5	-1.5	1.57
17	<u>6Hβ</u>	+4.0	+4.2	+4.1	+4.0	+4.4	5.99
15	H1,3,6,8	-2.5	-2.0	-2.0 5.0	-2.5	-2.4	1.93
	П2,7 Наболо	-3.4 _0.4	-3.9 -0.4	-3.8 _0 4	-3.0	-3.0 _0.4	4.32
16	H1268						1.93
10	H4 5 9 10	-2.0 -0.4	-2.5 -0.4	-2.2 -0.4	-0.3	-2.0	0.40
	6Hs	+4 3	+4.6	+4 5	+4 4	+4.8	4 39
17	H134679	-7.3	-7.4	-7.3	-6.7	-7.0	6.45
-	H _{2,5,8}	+3.0	+2.6	+2.5	+2.3	+2.4	1.78

			_				
		PBE0					
no	nuclei	N07D	6-31G*	N07D	TZVP	EPR-III	$ a_{iso} (exntl.)^a$
18	H ₁₇	-3.2	-3.2	-3.1	-2.8	-2.9	2.43
	H _{2,8}	+1.8	+1.6	+1.5	+1.4	+1.5	0.99
	H3,9	-3.9	-3.9	-3.8	-3.6	-3.8	3.58
	H4,10	+2.0	+1.8	+1.7	+1.6	+1.7	1.17
19	H2,7	-4.5	-4.6	-4.4	-4.2	d	3.94
	H _{3,8}	+1.4	+1.2	+1.1	+1.0	d	0.74
20	H1,8	-1.2	-1.1	-1.1	-1.0	-1.1	1.61
	H2,7	-0.0	-0.8	-0.8	-0.8	-0.8	0.44
	П3,6 Нд с	-3.1 +1.0	-3.2 +0.8	-3.2 +0.8	-2.9 +0.7	-3.1 +0.8	0.66
	H ₉	-8.8	-9.4	-9.3	-8.9	-9.0	9.02
21	H _{1.8}	-0.9	-1.0	-0.9	-0.9	d	1.14
	H _{2,7} /H _{4,5}	-0.5/+0.8	-0.7/+0.7	-0.7/+0.6	-0.7/+0.6	d	0.49^{c}
	H3,6	-2.5	-2.6	-2.5	-2.4	d	2.50
	H9	-7.3	-7.9	-7.8	-7.4	d	7.41
22	$H_{1,2}$	-4.1	-4.7	-4.6	-4.2	-4.2	4.35
	6Hβ/6Hβ	+6.9/+8.3	+7.1/+8.8	+7.1/+8.7	+7.0/+8.7	+7.6/+9.4	8.15 ^c
23	12Hβ	+3.2	+3.4	+3.4	+3.3	+3.6	3.28
	12Ηβ	+2.8	+3.1	+3.0	+3.0	+3.2	2.84
24	$2H_{\alpha}$	-9.3	-10.0	-9.8	-9.6	-9.5	9.58
	2Ho 2H	-3.3 +2.1	-3.6 +1.7	-5.5 +1.6	-5.0 +1.4	-5.2 +1.5	5.82 1.52
	ZIIm Ha	-10.0	-10.2	$^{+1.0}_{-10.2}$	-93	-9.8	9.58
25	2Ha	-9.5	-10.0	_9.9	-9.6	-9.5	10.23
20	$2H_0$	-5.8	-5.7	-5.7	-5.3	-5.5	6.42
	2Hm	+2.7	+2.2	+2.2	+2.0	+2.1	2.06
26	2Ho	-4.9	-4.9	-4.8	-4.4	-4.6	5.21
	$2H_m$	+1.8	+1.4	+1.3	+1.2	+1.2	1.36
	$6H_{\beta}$	+10.8	+11.1	+11.2	+11.0	+11.9	12.22^{b}
	3H _{β'}	+11.0	+11.4	+11.6	+11.5	+12.5	9.97 ^b
27	$4H_{\alpha}$	-6.8	-7.4	-7.2	-7.0	-7.0	5.88
	H _{2,3,5,6}	-1.8	-2.0	-2.0	-1.9	-2.0	2.13
28	$4H_{\alpha}$	-5.9	-6.6	-6.3	-6.2	-6.1	5.10
	12Ηβ	+1.2	+1.3	+1.3	+1.3	+1.4	1.53
29	$2H_{\alpha}$	-5.9	-0.5	-0.2	-0.1	-6.0	5.10 2.65
	H2,6	-2.3	-2.3 -1.4	-2.0	-2.4	-2.3	2.03
	6HB	+8.1	+8.3	+8.4	+8.2	+9.0	7 75
30	H2356	-1.7	-1.9	-1.9	-1.8	-1.8	1.98
	12H _β	+7.1	+7.3	+7.4	+7.2	+7.8	6.74
31	H3,6	+1.6	+1.2	+1.6	+1.0	+1.4	0.34
	$12H_{\beta}$	+3.6	+4.2	+3.8	+4.1	+4.0	3.76
	12H _{β'}	+2.2	+3.7	+2.3	+3.5	+2.5	2.56
32	4Harom	-1.7	-1.9	-1.9	-1.7	-1.8	2.01
	$8H_{\beta}$	+9.9	+10.3	+10.3	+10.2	+11.0	9.75
	$8H_{\gamma}$	-0.2	-0.1	-0.1	-0.1	-0.2	0.17
33	12H _{β,ax}	+4.1	+4.4	+4.3	+4.2	+4.6	4.22
	12H _{β,eq}	+0.9	+0.9	+0.9	+0.9	+1.0	0.97
34	24H _β	+3.6	+2.9	+2.9	+2.8	+3.0	2.81
35	$4H_{\alpha}$	-4.3	-4.7	-4.6	-4.5	-4.4	3.97
	H2,2',6,6'	-1.0	-1.1	-1.2	-1.1	-1.1	1.08
36	H2 27 6 67	<u> </u>	-1.5	-1.5	$\frac{-1.2}{-0.7}$	-1.2	0.73
50	H ₃ 3' 5 5'	_0.0 _1 4	-0.0 -1 5	-1.5	-1 4	-1 4	1.65
	12Hß	+5.0	+5.1	+5.2	+5.1	+5.5	4.70
37	На	-10.7	-11.0	-11.0	-10.6	-10.7	10.98
-	2Ho/2Ho	-3.8/-3.5	-3.7/-3.5	-3.6/-3.3	-3.4/-3.1	-3.5/-3.2	3.46 ^c
	$2H_m/2H_m$	+1.8/+2.0	+1.5/+1.7	+1.5/+1.6	+1.4/+1.5	+1.4/+1.6	1.31 ^c
	2Hp	-5.4	-5.5	-5.4	-5.0	-5.2	4.86

			_					
		PBE0	B3LYP					
no	nuclei	N07D	6-31C*	N07D	Т7.УР	FPR-III	$-a_{inc}(exntl)^{a}$	
38	Ha	-9.8	-10.4	-10.3	_9 9	-10 0	<u>11 06</u>	
	H1 1'	+1.9	+1.6	+1.5	+1.4	+1.4	0.93	
	H _{2.2} ,	-5.1	-5.1	-5.1	-4.6	-4.9	4.73	
	H _{3,3'}	+1.5	+1.2	+1.1	+1.0	+1.1	1.14	
	H4,4'	-3.3	-3.2	-3.1	-2.9	-3.0	3.19	
39	6Ho	-2.5	-2.4	-2.3	-2.1	-2.2	2.26	
	6Hm	+1.7	+1.5	+1.5	+1.3	+1.4	1.22	
	3Hp	-3.6	-3.6	-3.6	-3.3	-3.4	3.27	
40	H1,2	-5.2	-5.6	-5.5	-5.2	-5.1	6.53	
	H _{3,6}	-1.9	-2.2	-2.2	-2.0	-2.1	0.92	
	H4,5	-5.3	-5.7	-5.7	-5.3	-5.5	5.80	
41	H1,8	-1.6	-1.6	-1.5	-1.4	-1.5	1.73	
	H4,5	+0.9	+0./	+0./	+0.6	+0./	0.55	
	H3,6	-2.4	-2.5	-2.4	-2.5	-2.4	2.31	
12	<u>6Hβ</u>	+/.5	+/./	+/./	+/.6	+8.2	8.22	
42	4Ho 4H	-1.9	-1.8	-1.8	-1.0	-1./	1.37	
	4П0 ЛН /ЛН	-1.0 +1.2/+0.8	-1.3 +1.1/+0.7	-1.3 +1.1/+0.7	-1.5 +1.1/+0.6	-1.4 +1.1/+0.7	1.07	
	411m/411m /H.	-2.3	_2 2	-2.2	-2.0	-2 1	1.86	
43	H25012	+1.1	+1 1	+1 1	+1 1	+1 2	0.62	
45	H _{2,3,9,12}	-1.5	-1.6	-1.6	-1 4	-1.5	1 43	
	H7 14	+0.9	+0.8	+0.7	+0.6	+0.6	<0.1	
	2H _B	+0.1	+0.1	+0.1	+0.1	+0.1	<0.1	
44	H _{2.5.9.12}	+1.6	+1.6	+1.5	+1.5	+1.6	0.90	
	H3,4,10,11	-1.4	-1.5	-1.5	-1.3	-1.4	1.45	
	$4H_{\beta}$	+1.0	+1.0	+1.1	+1.0	+1.2	0.76	
45	H _{2,12}	+1.4	+1.5	+1.5	+1.5	+1.6	1.54	
	H5,9	+1.6	+1.7	+1.7	+1.7	+1.8	1.74	
	H _{3,11}	-0.02	-0.01	-0.01	-0.02	-0.02	2.03	
	H4,10	-0.1	-0.1	-0.1	-0.1	-0.1	$2.10 \rangle^{b}$	
	H7	-1.7	-1.8	-1.7	-1.7	-1.8	< 0.05 > b	
	H_{14}	-1.9	-1.9	-1.8	-1.8	-1.9	0.09/	
	$2H_{\beta}$	+19.9	+20.6	+20.7	+20.6	+22.1	21.82	
	$2H_{\beta}$	+0.5	+0.4	+0.4	+0.4	+0.4	0.59	
	H_{γ}	-2.2	-2.2	-2.2	-2.1	-2.3	2.46	
	H_{γ}	-1.2	-1.2	-1.2	-1.2	-1.2	1.29	
46	H2,5,9,12	+1.4	+1.4	+1.5	+1.5	+1.6	1.54^{e}	
	H3,4,10,11	-0.1	-0.3	-0.2	-0.2	-0.1	$1.88^{b,e}$	
	H _{7,14}	-1.7	-1.6	-1.6	-1.6	-1.7	0.12^{b}	
	$4H_{\beta}$	+6.4	+6.6	+6.6	+6.6	+7.1	7.18^{e}	
	$4H_{\gamma}$	+0.7	+0.8	+0.8	+0.8	+0.9	0.51^{e}	
47	H _{2,5,9,12}	+1.6	+1.7	+1.7	+1.7	+1.9	1.72	
	H3,4,10,11	-0.04	-0.03	-0.03	-0.03	-0.03	1.89	
	H7,14	-1.7	-1.7	-1.6	-1.6	-1.7	< 0.2°	
	6Hβ	+11.3	+11.7	+11.8	+11.7	+12.7	12.13	
48	4Ho	-2.3	-2.2	-2.1	-2.0	-2.1	2.5	
	4Hm	+1.2	+1.0	+1.0	+0.9	+1.0	1.0	
40	2Hp	-5.4	-5.4	-5.4	-5.1	-5.5	<u> </u>	
49	2日0 1日	-1.9 ±0.7	-1.8 ± 0.7	-1.8 ± 0.7	+1./	-1.8 ± 0.7	2.4	
	4Пm ЭН	±0.7 _3 1	±0.7 _3.2	⊤0./ _3 1	⊤0.8 _2 0	⊤∪./ 3 0	0.70	
50	2H						<u> </u>	
50	211 ₀ 4H	-2.4 +1 1	+0.9	-2.3	-2.1 +0.8	+0.8	2.0	
	2H.	_3.6	-3.6	-3.6	_3 3	_3 5	3 5	
	2Hg av	+4.6	+4 5	+4.6	+4 5	+4 9	47	
	2H8 ag	+1.8	+1.8	+1.8	-1.8	+1 9	1.8	
	p,cq						1.0	

^{*a*} The corresponding references are the same as those provided for ¹⁴N nuclei in Table 1. ^{*b*} The assignment of the experimental hfccs to these nuclei is expected to be exchanged taking into account the present theoretical calculations. ^{*c*} Those nuclei have not been taken into consideration in the regression analysis because of uncertainty in the assignation. ^{*d*} EPR-III basis set is not parameterized for third row nuclei. ^{*e*} Averaged values for two pairs protons.

Figure S1. Plot of theoretical *vs* experimental $a_{iso}(^{14}N)$ of the conjugated radical cations, calculated at the following levels: PBE0/N07D, B3LYP/6-31G*, B3LYP/N07D, B3LYP/TZVP, and B3LYP/EPR-III. (a) In the whole range; (b) in the range 0 – 10 G. Linear fits are represented by solid lines.

Figure S2. Plot of theoretical *vs* experimental $a_{iso}({}^{1}\text{H})$ of the conjugated radical cations, calculated at the following levels: PBE0/N07D, B3LYP/6-31G*, B3LYP/N07D, B3LYP/TZVP, and B3LYP/EPR-III. (a) In the whole range; (b) in the range 0 – 14 G. Linear fits are represented by solid lines.

Figure S3. Absolute (top) and relative (bottom) deviation of the calculated $a_{iso}(^{14}N)$ of the conjugated radical cations computed at the following levels: PBE0/N07D, B3LYP/6-31G*, B3LYP/N07D, B3LYP/TZVP, and B3LYP/EPR-III.

Level of theory	intercept	slope	R^2	N	min	max	max. absolute error	MAD ^a	range/MAD
PBE0/N07D	0.2459	0.9433	0.9819	165	0.003	22.2	2.0	0.39	56.92
B3LYP/6-31G*	0.2127	0.9983	0.9815	165	0.01	23.7	2.4	0.40	59.25
B3LYP/N07D	0.1704	0.9969	0.9832	165	0.01	23.4	2.2	0.37	63.24
B3LYP/TZVP	0.0896	0.9766	0.9838	165	0.02	22.7	1.8	0.34	66.76
B3LYP/EPR-III	0.0421	1.0370	0.9840	160	0.02	24.4	2.2	0.37	65.95

Table S2. Regression analysis for predictions of ¹H hfccs (G).

^{*a*} MAD (Mean Absolute Deviation) = $\frac{1}{N} \sum_{i}^{N} |a_{iso}(calc) - a_{iso}(exp)|$.

Figure S4. Plot of selected NBO of radicals 43 (top), 46 (center) and 47 (bottom), computed at B3LYP/cc-pVTZ//B3LYP/6-31G* level of theory.

Figure S5. Plot of N atomic contributions to positive density deformations (contour = 0.001 a.u.) of radicals 43 (top), 46 (center) and 47 (bottom), computed at B3LYP/cc-pVTZ//B3LYP/6-31G* level of theory.

Figure S6. Plot of spin densities (contour = 0.005 a.u.) of radicals **43** (top), **46** (center) and **47** (bottom), computed at PBE0/N07D//B3LYP/6-31G* level of theory.

