Electronic Supplementary Information

V-containing ZrO₂ inorganic yellow nano-pigments

José Miguel Calatayud, Pablo Pardo and Javier Alarcón

University of Valencia, Department of Inorganic Chemistry, Calle Doctor Moliner 50, 46100-

Burjasot (Valencia), Spain

Fig. 1S. EDX microanalysis of as-obtained $V_x Zr_{1-x}O_2$ precipitates. a) x=0.015, b) x=0.05 and c) x=0.1.

Fig. 2S. XRD patterns of as-obtained $V_x Zr_{1-x}O_2$ precipitates.

Fig. 3S. IR spectra of as-obtained $V_x Zr_{1-x}O_2$ precipitates.

Fig. 4S. TG and DTA of the as-obtained $V_{0.05}Zr_{0.95}O_2$ precipitate.

Fig. 5S. TG and DTA of the as-obtained $V_{0.1}Zr_{0.9}O_2$ precipitate.

Fig. 6S. XRD patterns of undoped ZrO_2 precipitate prepared by using EG as solvent after annealing at different temperatures for 3h. \star is tetragonal zirconia and \bullet is monoclinic zirconia.

Fig. 7S. XRD patterns of $V_{0,1}Zr_{0,9}O_2$ precipitate prepared by using EG as solvent after annealing at different temperatures for 3h. \star is tetragonal zirconia and \star is monoclinic zirconia.

Fig. 8S. EDX microanalysis of monoclinic $V_x Zr_{1-x}O_2$ nano-pigments after annealing at 800°C. a) x=0.015, b) x=0.05 and c) x=0.1.