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Figure S1. Configuration of the approaching spherical precursor and the growing nanochain: (a) illustration of geometrical 

parameters in the derivation of the geometric relations and the EDL interaction, (b) illustration of geometrical parameters for the 

derivation of the vdW interaction.

Derivation of the geometric relations
As shown in Figure S1a, the correlation between these two radii can be expressed in Eq. S1,

                (S1) 1/22 2
0 0 0r R H 

where H0 is the thickness of the nanochain spherical segment. r0 and R0 the radii of two side surfaces of 
the spherical segment, respectively.

In our model, it is assumed that the nanochain maintains a fixed volume and a fixed radius in the 
evolution of the nanochain to nanorod. So, the volume identity can be given is Eq. S2,

             (S2)2 2 2 2 3
0 0 0 0 0 0 0

1 4(3 3 )
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where L0 is the length of the cylindrical part in the nanochain.
Simplifying Eq. S2, we obtain the expression of the length L0 in Eq. S3.
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Curve fitting of the temperature dependence of surface potential
The surface potential ψ0 of the nanoparticles can be determined by the Nernst equation as shown in 

Eq. S4, 1

    (S4)0 ln( )B

zp

k T c
xe c

 

where kB is the Boltzmann constant, e is the elementary charge, T represents the temperature of the 
solution, x is the valence number of the potential-determining ions Mx+, c is the concentration of the 
potential-determining ions Mx+, and czp is denoted as p.z.c. (point of zero charge).czp is expressed as the 
form of negative decimal logarithm in Eq. S5.

     (S5)pM log( )pzc zpc 

The correlation between the pMpzc and the temperature can be deduced from the Gibbs-Helmholtz 
equation as shown in Eq. S6, 2, 3

    (S6)
*

*12 ln(10)( pL pM )
2 pzc

HR S
T

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where pL is the negative decimal logarithm of the solubility product of the potential-determining ions, 
R is the ideal gas constant, and ∆H* and ∆S* are the standard differential enthalpy and the standard 
differential entropy of ions transfer, respectively.

The temperature dependence of the pL of silver iodide has been measured in experiments by 
Lyklema, as shown in Table 1.2

Table 1. Temperature dependence of pL.

Temperature (K) pL
278
288
298
308
318
328
338
348
358

17.20
16.32
15.73
15.13
14.61
14.06
13.59
13.12
12.69

For obtaining the expression of the temperature dependence of pL, the curve fitting is applied. Fitted 
by the rational function with one numerator degree and one denominator degree, the correlation 
between the pL and the temperature is shown in Eq. S7.

    (S7)
1.267 3191pL=

71.41
T

T



The coefficient of determination of this curve fitting R2 is equal to 0.9992 indicating that the curve 

fits well the experiment data.
By substituting Eqs. S5, S6 and S7 into Eq. S4, the temperature dependence of ψ0 is shown in Eq. S8,
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where ∆H*=76.82 kJ/Mol, ∆S*= 175.30 J/Mol·K for silver iodide, and c0=1.333×10-5 Mol/L by 
assuming ψ0=50 mV at 298 K.

Derivation of the EDL interaction between the growing nanochain and spherical 
precursor NC

The EDL interaction energy per unit area between two infinite flat surfaces is given by Eq. S9,1

    (S9)1 2
0( ) 64 exp( )BE h k Tn h 

  

where n∞ is the concentration of indifferent ions far from nanoparticles and h is the separation between 
two infinite flat surfaces. For the z : z supporting electrolyte, the Debye–Hückel length κ-1 is given in 
Eq. S10,1
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(S10)
where ε represents the absolute permittivity of the solution. The parameter ϒ0 is expressed as Eq. S11.1
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Hereby, the EDL interaction between curved surfaces by the surface element integration (SEI) is shown 
in Eq. S12,4

   (S12)
1 1

1d ( )dAEDL
S A

U U E h
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  1 1
2 2

1 1

n kn k
n k

where n1 and n2 are the unit normal vectors outward the approximated surface, k1 and k2 are the unit 
vectors which are parallel with the respective z axes, and dA1 is the infinitesimal projected area of the 
surface element dS1.

As shown in Figure 1a, the total EDL interaction can be viewed as the superposition of two parts of 
interaction: the forward hemispherical facet A1 of the precursor with the nanochain BC and the 
backward one A2 with the nanochain BC, as given in Eq. S13.

                                                       (S13)1 2A BC A BC
EDL EDL EDLU U U 

The EDL interaction between the hemispherical facet A1 and the nanochain BC can be divided further 
into six subdivisions as shown in Eq. S14.

   (S14)
' '

1 1 1 1 2 1 2 1 2 1 2 1 1A BC A B A B A B A C A C A C
EDL EDL EDL EDL EDL EDL EDLU U U U U U U     

These six EDL interactions are figured out in the cylindrical coordinate as follows,

    (S15)
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where D is the minimum separation between the precursor and the nanochain. Furthermore, the term

is equal to ±1 for flat surfaces or for spherical surfaces. Similarly, the 





1 1
2 2

1 1

n kn k
n k

2
01 (r/ )R 

EDL interaction between the hemispherical facet A2 and nanochain BC can also be divided into six 
subdivisions as shown in Eq. S21.

            (S21)
' '
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These six EDL interactions are computed in the cylindrical coordinate as follows.
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Derivation of the vdW interaction between the growing nanochain and spherical 
precursor NC

The vdW interaction energy between two macroscopic bodies is shown in Eq. S28,5

   (S28)
1 2

2

1 2 6vdW
V V

qU d d
r
   

where dν1 and dν2 are both the volume elements of macroscopic particles, V1 and V2 are the particle 
volumes, q is expressed as the atom density of the interactional particles, λ is defined as London-van 
der Waals constant, and r represents the separation between dν1 and dν2. As shown in Figure 1b, the 
vdW interaction between the precursor and an atom of point P in the nanochain Ep can be written as Eq. 
S29.

   (S29)
0

0

2 2
05 [ ( ) ]d

R R

p R R
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r R
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
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The integration result of Eq. S29 is given in Eq. S30.

H0
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If we integrate qEp (point P) throughout the domain of one spherical segment of the nanochain, the 
vdW interaction between this spherical segment and the spherical precursor is given in Eq. S31.

  (S31)
2 2

0 0 ' '

0 0
d 2 d
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vdW pU t qE R R


   
If we integrate qEp throughout the domain of one cylindrical part of the nanochain, the vdW interaction 
between this cylindrical part and the spherical precursor is shown in Eq. S32.

   (S32)
0 0 ' '
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In general, the constant π2q2λ before the integration is substituted by the Hamaker constant A. 

Therefore, the vdW interactions between the precursor with the four spherical segments and two 
cylindrical parts are expressed as follows.
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The total vdW interaction is the sum of these six parts, which is shown in Eq. S39.

                 (S39)1 2 3 1 2 3AB AC AB AB AB AC AC AC
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