Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

N-type SnO₂ nanosheets stand on p-type carbon nanofibers: A novel

hierarchical nanostructures based hydrogen sensor

Zhaojie Wang ^a, Siyuan Liu ^b, Tingting Jiang ^c, Xiuru Xu ^b, Jun Zhang^d, Changhua An^{a, *} and Ce Wang ^{b, *}

^a Department of Materials Physics and Chemistry, College of Science, China University of Petroleum, Qingdao, 266580, China

^b Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, China

^c Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China

^d State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China

*Corresponding author: anchh@upc.edu.cn (C. A.); cwang@jlu.edu.cn (C. W.)

Fig. S1 Low and high magnified TEM images of SnO_2 nanosheets decorated carbon nanofibers with different hydrothermal reaction time of (a , a', a'') 3h, (b, b', b'') 6 h, (c, c', c'') 12 h, (d, d', d'') 24 h. The insets are the SAED patterns, respectively.

Fig. S2 EDS analysis of SnO_2 nanosheets decorated carbon nanofibers with different hydrothermal reaction time.

Fig. S3 SEM images of SnO_2 microspheres assembled by SnO_2 nanosheets obtained by the same hydrothermal method without the presence of CNFs.

Fig. S4 (a) Responses of SnO₂ microspheres assembled from SnO₂ nanosheets as a function of operating temperatures. (b) Linear plots of the response of the sensor based on SnO₂ microspheres against H₂ at 320°C. (c) Response and recovery behavior of SnO₂ microspheres to 100 ppm H₂ at 320°C. (d)Response of the optimized sensor to 100 ppm different gases (H₂, ethanol, acetone, CH₄, butane, toluene and CO) at 320°C.