Electronic Supplementary Information

A surfactant free synthesis and formation mechanism of hollow $\mathrm{Cu}_{2} \mathrm{O}$ nanocubes using Cl^{-}ions as the morphology regulator

Qiuxiang Wang, Qin kuang,* Kunshui Wang, Xue Wang, Zhaoxiong Xie*

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry, Chemical
Engineering, Xiamen University, Xiamen 361005
E-mail: zxxie@xmu.edu.cn, qkuang@xmu.edu.cn

Part I. Estimation of mass transfer in the morphology evolution from solid $\mathbf{C u C l}$ cubes to hollow $\mathrm{Cu}_{2} \mathrm{O}$ cubes.

We take the hollow $\mathrm{Cu}_{2} \mathrm{O}$ nanocube shown in Fig. 1c as the representative example. According to the TEM image, the outer length of the hollow $\mathrm{Cu}_{2} \mathrm{O}$ nanocube is 116.4 nm , the interior size is ca. 105.6 nm , and the thickness is 10.8 nm . We suppose that such a hollow $\mathrm{Cu}_{2} \mathrm{O}$ nanocube is transformed from a solid CuCl , the size of which is equal to the interior size of hollow $\mathrm{Cu}_{2} \mathrm{O}$. Then we can judge the rationality of our hypothesis by estimating mass transfer in the morphology evolution from solid CuCl cubes to hollow $\mathrm{Cu}_{2} \mathrm{O}$ cubes. The detailed calculation processes are shown in the following equations.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{i}}=\left(\mathrm{d}_{\mathrm{i}}\right)^{3} \\
& \mathrm{~V}_{\text {shell }}=\mathrm{V}_{\text {total }}-\mathrm{V}_{\text {interior }} \\
& \mathrm{n}=\mathrm{n} \circ \times \frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{~V}_{\circ}}
\end{aligned}
$$

Equation 1

Equation 2

Equation 3

The volume of a single hollow $\mathrm{Cu}_{2} \mathrm{O}$ particle could be seen as three parts, which are the total, shell and interior, respectively. V_{i} is the specific volume of each part (total or interior), and d_{i} is the side length. We take the hollow $\mathrm{Cu}_{2} \mathrm{O}$ nanocube displayed in Fig. 1c as the representative example. The d_{i} of total particle and the interior is 116.4 nm and 105.6 nm , respectively, according to our measured results. From the equation 1, we can get the volume of total particle part and interior part, which are $1.58 \times 10^{6} \mathrm{~nm}^{3}$ and $1.18 \times 10^{6} \mathrm{~nm}^{3}$ respectively. The volume of shell $\left(V_{\text {shell }}\right)$ could be calculated by the difference between the total volume of single particle ($V_{\text {total }}$) and the volume of interior $\left(V_{\text {interior }}\right)$, as shown in the equation 2 , which is 0.40×10^{6}
nm^{3}. Finally, the number of specific kind of molecules could be figure out via the equation 3, where V_{0}, n_{o} and n stand for the volume of crystal cell, the number of molecules in each cell and the total molecule number, respectively. The V_{0} of $\mathrm{Cu}_{2} \mathrm{O}$ and CuCl are $77.83 \AA^{3}$ and $158.87 \AA^{3}$, and the n_{0} are 2 and 4 , respectively. According to the equation 3, the total molecular number n of CuCl and $\mathrm{Cu}_{2} \mathrm{O}$ are finally calculated to be 2.97×10^{7} and 1.03×10^{7}, respectively. In theory, $2.97 \times 10^{7} \mathrm{CuCl}$ can result in the formation of $1.48 \times 10^{7} \mathrm{Cu}_{2} \mathrm{O}$. Our calculation result basically matches the theoretical one, which indirectly confirms our hypothesis that the hollow $\mathrm{Cu}_{2} \mathrm{O}$ nanocubes should be transformed from CuCl in this case.

Part II. Supplementary results

Fig. S1 (a) SEM image and (b) corresponding XRD pattern of blue colloidal precursors obtained with 0.9 mmol NaOH .

Fig. S2 SEM and TEM images of hollow $\mathrm{Cu}_{2} \mathrm{O}$ nanocubes obtained with (a,b) 5 mmol NaCl and (c,d) 7 mmol .

Fig. S3 (a) SEM image and (b) corresponding XRD pattern of as-prepared products when NaCl was replaced with 3 mmol NaBr and copper nitrate used as copper source.

Fig. S4 Low magnification SEM and TEM images of products obtained after (a,b) 1 \min and (c,d) 5 min .

Fig. S5 (a) SEM image and (b) corresponding XRD pattern of blue colloidal precursors obtained with 5 mmol NaOH .

