Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting information

Preparation and Application of Cobalt Oxide Nanochains as Electrode Materials for Electrochemical Supercapacitors

Faranak Manteghi^{1,*}, Sayed Habib Kazemi^{2,*}, Masoud Peyvandipoor¹, Ahmad Asghari²

¹Department of Chemistry, Iran University of Science and Technology, Tehran, Iran

¹Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

*Corresponding Authors: Faranak Manteghi, correspondence for synthesis and characterization section (<u>f_manteghi@iust.ac.ir</u>); Sayed Habib Kazemi, Correspondence for electrochemical tests and results (<u>habibkazemi@iasbs.ac.ir</u>)

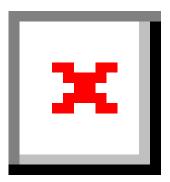


Figure S-1. The N_2 adsorption-desorption isotherm of sample

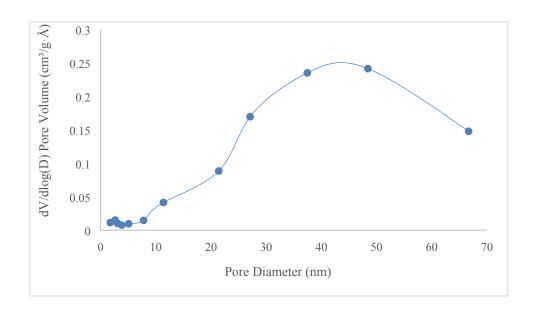
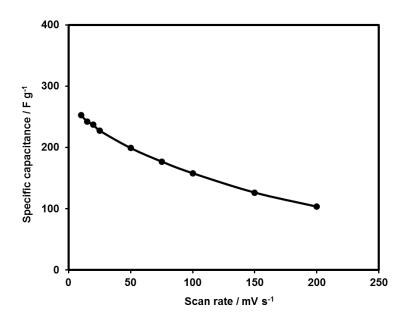
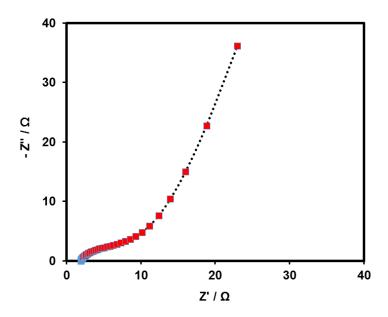




Figure S-2. (BJH) pore size distribution

Figure S-3. Plot of specific capacitance against the scan rate of potential for cobalt oxide-carbon black composite fabricated under inert atmosphere

Figure S-4. Nyquist diagram recorded for cobalt oxide-carbon black composite fabricated under inert atmosphere at open circuit potential