Supporting information for:

In situ synthesis of Bi₂S₃/Bi₂SiO₅ heterojunction photocatalysts with

enhanced visible light responsive activity

Xiaolei Liu,^a Wenjun Wang,^a Yuanyuan Liu,^{*a} Baibiao Huang,^{*a} Ying Dai,^b Xiaoyan Qin,^a and Xiaoyang Zhang^a

^a State key lab of crystal materials, Shandong university, Jinan, China, 250100.
Email: bbhuang@sdu.edu.cn (Baibiao Huang), yyliu@sdu.edu.cn (Yuanyuan Liu)
^b School of physics, Shandong university, Jinan, China, 250100.

1. UV-vis diffuse reflectance spectra

Fig. S1 UV-vis diffuse reflectance spectra (a) thiourea as sulfur source reacted with Bi_2SiO_5 at room temperature for 30 min, (b) thiourea as sulfur source reacted with Bi_2SiO_5 at 60 °C for 3 h, (c) pure Bi_2SiO_5 , (d) cysteine as sulfur source reacted with Bi_2SiO_5 at 60 °C for 3 h, (e) cysteine as sulfur source reacted with Bi_2SiO_5 at 60 °C for 3 h, (e) cysteine as sulfur source reacted with Bi_2SiO_5 at room temperature for 30min and (f) TAA as sulfur source reacted with Bi_2SiO_5 at room temperature for 30 min.

Fig. S1 shows the UV-vis diffuse reflectance spectra of Bi_2S_3/Bi_2SiO_5 heterojunctions forming by different sulfur source and processing conditions. From the picture we can know even improving the reaction time and temperature, the visible light absorption of the samples using thiourea and cysteine as sulfur source is still very low. When TAA was used as sulfur source and the reaction was kept in a short time and room temperature, the visible light absorption of the samples is increased obviously. From the results, the speed of releasing S²⁻ can be concluded in the following order: TAA > cysteine > thiourea. So TAA is regarded as the appreciate sulfur source for the preparation of Bi_2S_3/Bi_2SiO_5 heterojunctions.

2. XRD pattern

Fig. S2 (a) XRD pattern of pure Bi_2SiO_5 (JCPDS. 36-0287), (b) XRD pattern of Bi_2SiO_5 reacted with TAA solution at 80 °C for 3 h, (c) XRD pattern of pure Bi_2S_3 (JCPDS. 17-0320).

From the picture we can see the diffraction peaks of Bi_2S_3 (JCPDS. 17-0320) appear obviously. This result indicates that the Bi_2SiO_5 can react with TAA to form Bi_2S_3/Bi_2SiO_5 composites, and increased reaction time and temperature can promote the Bi_2S_3 formation.

3. The chemical composition and of composite materials

From the EDS spectrum and detailed chemical composition of composite materials of Bi_2S_3/Bi_2SiO_5 composites, the atomic percentage of Bi, O, Si (Bi : O : Si = 2.15 : 1 : 6.19), is approximately corresponded with the stoichiometric ratio of Bi_2SiO_5 . The atomic ratio of sulfur are 0.330%, 0.740% and 1.280% for Bi_2S_3/Bi_2SiO_5 -15 min, Bi_2S_3/Bi_2SiO_5 -30 min, and Bi_2S_3/Bi_2SiO_5 -60 min, respectively. Therefore, the actual molar content of Bi_2S_3 are 0.110%, 0.247% and 0.427%, respectively.

Fig. S3 EDS spectrum and detailed chemical composition of composite materials of Bi₂SiO₅.

Fig. S4 EDS spectrum and detailed chemical composition of composite materials of Bi_2S_3/Bi_2SiO_5 -15min heterojunction.

		S	pectrum 18
0 1 2 3 Full Scale 1910 cts Cursor: 0.000	4 5 6	7 8	9 10 keV
Element	Weight%	Atomic%	-
ОК	15.56	64.05	
Si K	4.29	10.06	
S K	0.36	0.74	
Bi M	79.79	25.15	
Totals	100.00		_

Fig. S5 EDS spectrum and detailed chemical composition of composite materials of Bi_2S_3/Bi_2SiO_5 -30min heterojunction.

Fig. S6 EDS spectrum and detailed chemical composition of composite materials of

 Bi_2S_3/Bi_2SiO_5 -60min heterojunction.

4. The calculation of the sizes of Bi₂S₃ in Bi₂S₃/Bi₂SiO₅ heterojunctions

When the size of the semiconductor nanoparticles reduce to 1-10 nm, the quantum confinement will appear,¹ the blue shift of the light absorption will happen and the band gap of the semiconductor is adjustable. The different band gap of the products attribute to the quantum confinement. On the basis of the effective mass approximation model, the relationship between ΔE_g and R can be describe by the following equation:²

$$\Delta E_g(R) = \frac{\mathbf{h}^2}{8m_0R^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*}\right)$$

Eg (R) is the band gap shift, mo the electron mass, h the Planck's constant, R the crystal radius, the

 m_e^* and m_h^* are the effective masses of electrons and holes, respectively. Through the caculation, ΔE_g (R) = 19.4/R², we can get the sizes of Bi₂S₃ in Bi₂S₃/Bi₂SiO₅ heterojunction photocatalysts with different reaction time, 3.41 nm, 3.92 nm and 4.61 nm, respectively. It accord with the conditions of the quantum size.

5. The positions of E_{CB} and E_{VB} of Bi₂SiO₅ and Bi₂S₃/Bi₂SiO₅ heterojunctions

For a semiconductor, the optical absorption near the band edge follows the equation: $ahv = A(hv-E_g)^{n/2}$,³ in the equation, a is the absorption coefficient, v is light frequency, A is proportionality constant and E_g is band gap, respectively. The value of n depends on the type of the semiconductor, n=1 for direct transition and n=4 for indirect transition.⁴ As reported previously, Bi₂SiO₅ and Bi₂S₃ both are direct transition, ^{5,6} the n values of Bi₂SiO₅ and Bi₂S₃ are 1. From the plot of $(ahv)^2$ - hv, we can estimate the band gap of the products, the E_g of Bi₂SiO₅, Bi₂S₃/Bi₂SiO₅-15 min, Bi₂S₃/Bi₂SiO₅-30 min, Bi₂S₃/Bi₂SiO₅-60 min are 3.76 eV, 2.96 eV, 2.56 eV and 2.21 eV, respectively. X_{Bi} =4.885, X_{Si} =4.915, X_O =7.675, X_S =6.385, so the X values for Bi₂SiO₅ and Bi₂S₃ are 6.474eV and 5.276eV. The top of VB of Bi₂SiO₅ is 3.854eV and the bottom of CB is 0.094eV. The values of E_{CB} , E_{VB} and E_g of Bi₂S₃/Bi₂SiO₅ heterojunctions are listed in Table S1.

Semiconductor	$E_{CB} (eV)$	$E_{VB}(eV)$	E _g (eV)
Bi ₂ S ₃ in Bi ₂ S ₃ /Bi ₂ SiO ₅ -15min	-0.704	2.256	2.96
Bi_2S_3 in Bi_2S_3/Bi_2SiO_5 -30min	-0.504	2.056	2.56
Bi_2S_3 in Bi_2S_3/Bi_2SiO_5 -60min	-0.329	1.881	2.21

Table S1. The values of E_{CB} , E_{VB} and E_g of Bi_2S_3 in Bi_2S_3/Bi_2SiO_5 heterojunctions.

6. The BET surface areas of the samples

Nitrogen adsorption and desorption measurement was used to study the Brunauer–Emmett–Teller (BET) surface areas of the samples, Table S2 shows the BET surface areas of the samples. It shows that the surface areas of the samples are almost the same, because the content of Bi_2S_3 is very low.

sample	Bi ₂ SiO ₅	Bi ₂ S ₃ /Bi ₂ SiO ₅ -15min	Bi ₂ S ₃ /Bi ₂ SiO ₅ -30mi	Bi ₂ S ₃ /Bi ₂ SiO ₅ -60min
			n	
BET surface area(m ² /g)	22.489	24.606	23.524	24.307

Table S2. The BET surface areas of the samples.

Notes and references

1 Y. Bessekhouad, D. Robert and J. V. Weber, J. Photochem. Photobiol., A, 2004,163, 569.

2 A. L. Linsebigler, G. Q. Lu, J. T. Yates, Chem. Rev., 1995, 95, 735-758.

3 Bao, H, C. M. Li, X. Cui, Y. Gan, Q. Song, J. Guo, Small 2008, 4, 1125-1129.

4 M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, S. Alaoui-Ismaili, Analytical Letters 32 (1999) 1169–1181.

5 H. F. Cheng, B. B. Huang, Y. Dai, X. Y. Qin, X. Y. Zhang, Langmuir 26 (2010) 6618.

6 J. Duan, Y. Liu, X. Pan, Y. Zhang, J. Yu, Kiyotaka Nakajim, Hiroki Taniguchi, Catalysis Communications 39 (2013) 65-69.