Supplementary Information

Colorimetric Detection of Al (III) in Vermicelli Samples Based on Ionic Liquid Groups Coated Gold Nanoparticles

Wenwen Chen,^{a, b} Yuexiao Jia,^{a, b} Yan Feng,^{a, c} Wenshu Zheng,^{a, b} Zhuo Wang,^a and Xingyu Jiang^b

^a Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, China.

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c China Agricultural University, Beijing 100094, China

E-mail: <u>xingyujiang@nanoctr.cn</u> and <u>wangz@nanoctr.cn</u>.

EXPERIMENTAL SECTION

Figure S1 The response of IL-Au NPs with the addition of more metal ions. S-4

Figure S2 Characterization of Al^{3+} induced aggregation of ionic liquid coated Au NPs, UV-Vis absorption and pictures of IL-Au NPs without and with the addition of Al^{3+} .

Figure S3 TEM image of dispersed IL-Au NPs without Al^{3+} (a) and aggregated IL-Au NPs with the addition of Al^{3+} (b).

Figure S4 DLS measurements for IL-Au NPs before (a) and after adding Al^{3+} (b). S-5

Table S1 The concentration of different metal ions in vermicelli sample (with very little Al, whose concentration is too low to detect by our method) detected by ICP-OES.

S-5

S-3

S-4

S2

EXPERIMENTAL SECTION

Materials and Instrumentation HAuCl₄·3H₂O, NaBH₄ were purchased from Sinopharm Chemical Reagent Co., Ltd and ionic liquid (1-ethyl-3-methylimidazolium thiocyanate) was purchased from Shanghai Cheng Jie Chemical Co.LTD. The UV-Vis spectra were recorded with a UV2450 spectrophotometer (Shimadzu). Dynamic light scattering (DLS) and zeta potential (ζ) were performed on a Zeta Sizer Nano ZS (Malvern Zetasizer 3000HS and He/Ne laser at 632.8 nm at scattering angles of 90 at 25 °C). Transmission electron microscope (TEM) images were obtained by using Tecnai G2 20 S-TWIN at an accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) characterization was carried out on ESCALAB250Xi, Thermo Fisher. Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) results were received by Perkin Elmer Optima 6300DV.

Preparation of IL-capped Au NPs 100 μ g/mL HAuCl₄·3H₂O and 1 μ L ionic liquid (1-ethyl-3-methylimidazolium thiocyanate) were dissolved in 20 mL deionized water (DI water) in a round-bottom flask. Then we put it in the ice-bath. 2 mg NaBH₄ was dissolved in 10 mL DI water in another tube and precooled in ice-bath for 10 minutes. Then we added NaBH₄ solution into the round-bottom flask dropwise with violent stirring, yielding a red solution. After continued stirring for 1 hour, we stopped and placed the synthesized IL-Au NPs in 4 °C refrigerator.

Experimental Procedure for the Selectivity and Sensitivity of this Assay We added different metal ions to IL-Au NPs (1 mL), containing Na⁺, K⁺, Fe²⁺, Fe³⁺, Al³⁺, Zn²⁺, Ca²⁺, Pb²⁺, Ba²⁺, Mn²⁺, Ni²⁺, each with a final concentration of 10 μ M. The addition of Al³⁺ caused color change of DMSA-Au NPs. The mixtures were kept for 10 min, the pictures were taken and meanwhile UV-Vis absorption spectra were obtained. To verify the selectivity of IL-Au NPs further, we did the same procedures and the concentration of Na⁺, K⁺ is 100 μ M, the concentration of Ca²⁺, Fe³⁺ is 20 μ M, the concentration of Cr³⁺, Ce³⁺, Cu²⁺, Hg²⁺, Ag⁺ is 10 μ M.

To evaluate the sensitivity of the IL-Au NPs assay for Al^{3+} , we used DI water to dissolve AlCl₃ to prepare a stock solution, added different concentrations of AlCl₃ solutions (10 µL) to IL-Au NPs (1 mL), and the final concentrations of AlCl₃ were set to be 0, 1 µM, 2 µM, 5 µM, 10 µM, 20 µM, 50 µM and 100 µM. The resulting mixtures were continuously shaken for 10 min, the pictures were taken and meanwhile the corresponding UV-Vis absorption spectra were recorded.

All the measurements were repeated 5 times for each concentration. We also obtained the DLS data and TEM image to confirm our results.

Analysis of Al^{3+} in real samples The real samples we used were vermicelli sold in the market. For the analysis of this sample, we carried out the pretreatment according to the literature¹. Briefly, we sealed vermicelli (dried, kibbling, 0.5 g), HNO3 (7 mL) and 30% H₂O₂ (2 mL) into a Teflon equipped stainless steel autoclave, which was then placed in a drying oven (DHG-9123A, Shanghai Yiheng Scientific Instrument Limited Company), After hydrothermal treatment at 130 °C for 4 h, the autoclave was cooled to room temperature. The obtained solution is heated to get rid of acid on an electric heating plate. We transferred the solution into a volumetric flask, and then added H₂O to increase the volume of solution up to the standard mark of volumetric flask. Then we applied ICP-OES to characterize the concentration of 10 metal elements in the solution,

S3

including Al, Na, K, Ba, Ca, Fe, Mn, Ni, Zn, Pb. We picked one vermicelli sample almost without Al (0.37 μ M) to spike KAl(SO₄)₂·12H₂O and the other containing Al (386.67 μ M) to detect using our assay. The procedure of KAl(SO₄)₂·12H₂O detection in vermicelli samples was similar to that of the colorimetric detection of Al³⁺. We can use the value of A₆₅₀/A₅₂₀ and linear relationship received in detection of KAl(SO₄)₂·12H₂O to obtain the concentration of Al.

Supporting figures and tables:

Figure S1. The response of IL-Au NPs with the addition of supplementary metal ions. The concentration of Na⁺, K⁺ is 100 μ M, the concentration of Ca²⁺, Fe³⁺ is 20 μ M, the concentration of Cr³⁺, Ce³⁺, Cu²⁺, Hg²⁺, Ag⁺ is 10 μ M.

Figure S2. Characterization of Al^{3+} induced aggregation of ionic liquid coated Au NPs, UV-Vis absorption and pictures of IL-Au NPs without and with the addition of Al^{3+} .

Figure S3. TEM images of dispersed IL-Au NPs without Al^{3+} (a) and aggregated IL-Au NPs with the addition of Al^{3+} (b).

S4

Figure S4. DLS measurements for IL-Au NPs before (a) and after adding Al^{3+} (b).

Table S1. The concentration of different metal ions in vermicelli sample (with very little Al) detected by ICP-OES.

	Concentration
Metal	(µM)
Al	0.37
Na	412.90
Κ	215.12
Ba	2.22
Ca	299.26
Fe	240.7
Mn	8.44
Ni	0.06
Zn	6.30
Pb	undetected

Reference:

(1) Y. M. Guo, Y. Zhang, H. W. Shao, Z. Wang, X. F. Wang, X. Y. Jiang, Anal. Chem. 2014, 86, 8530-8534.