Electronic Supplementary Information (ESI)

Large grain size perovskite thin film with dense structure for planar heterojunction solar cells *via* spray deposition under ambient condition

Zhurong Liang,^{ab} Shaohong Zhang,^a Xueqing Xu,^{*ab} NanWang,^a Junxia Wang,^a Xin Wang,^a Zhuoneng Bi,^{ab} Gang Xu,^{ab} Ningyi Yuan^c and Jianning Ding^c

 ^a Guangzhou Institute of Energy Conversion, Renewable Energy and Gas Hydrate Key Laboratory of Chinese Academy of Sciences, Guangzhou 510640, China.
^b University of Chinese Academy of Sciences, Beijing 100049, China.

^c Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Jiangsu 213164, China.

ESI 1:

Contact angles of perovskite precursor solution with a concentration of 11.3 wt% on the surfaces of different substrates: (a) FTO, (b) cp-TiO₂ (compact TiO₂)/FTO, (c) ms-TiO₂ (mesoporous TiO₂) /cp-TiO₂/FTO, and (d) PEDOT:PSS/FTO; contact angles of perovskite precursor solution with different concentration on the surfaces of cp-TiO₂: (e) 5.6 wt%, (f) 9.0 wt%, (g) 11.3 wt%, and (h) 15.0 wt%.

ESI 2:

Surface SEM images of the perovskite thin films prepared using a precursor solution concentration of 11.3 wt% by spray deposition on compact TiO_2 (a), and spin-coating on compact TiO_2 (b) and mesoporous TiO_2 (c).

ESI 3:

Photocurrent density-voltage (J-V) at forward scan (from short-circuit to open-circuit under the forward bias voltage) and reverse scan (from open-circuit to short-circuit under the forward bias voltage) for planar solar cells using perovskite films with varied precursor concentration *via* spray deposition.

ESI 4:

Photocurrent density-voltage (J-V) at forward scan and reverse scan for mesoporous solar cells using perovskite films with varied precursor concentration *via* spray deposition.

Table. Device parameters (at reverse scan) for mesoporous solar cells using perovskite films prepared using a precursor solution with a concentration of 11.3 wt% *via* spray deposition.

Precursor solution	J _{sc}	V _{oc}	FF	PCE
concentration	(mA/cm^2)	(V)		(%)
11.3 wt%	19.0	0.69	0.53	7.01

ESI 5:

Photocurrent density-voltage (J-V) curves for solar cells employed perovskite films prepared using a precursor solution concentration of 11.3 wt% by spray deposition, and spin-coating. The corresponding photovoltaic parameters of which are summarized in the table below the figure.

Table. Device parameters (at reverse scan) for solar cells employed perovskite films prepared using a precursor solution with a concentration of 11.3 wt% *via* spray deposition and spin-coating.

	J _{sc}	V_{oc}	FF	PCE
	(mA/cm^2)	(V)	ГГ	(%)
Spray deposition	18.81	0.81	0.48	7.89
Spin-coating	14.33	0.70	0.42	4.23