Anticorrosive Assay-Guided Isolation of Active Phytoconstituents from *Anthemis pseudocotula* Extracts and a Detailed Study of Their Effects on the Corrosion of Mild Steel in Acidic Media

H. Z. Alkhathlan*, M. Khan, M. M. S. Abdullah, A. M. Al-Mayouf,

A. Yacine Badjah-Hadj-Ahmed, Z. A. ALOthman, A. A. Mousa

Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh -

11451, Saudi Arabia.

*To whom correspondence should be addressed: *E-mail: khathlan@ksu.edu.sa*

Tel: +966-1-4675910, Fax: +966-1-4675992.

Fig. S1a. ¹H NMR spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S1b. Expanded ¹H NMR spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S1c. Expanded ¹H NMR spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S2a. ¹³C NMR spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S2b. DEPT spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S3a. COSY spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S3b. Expanded COSY spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S3c. Expanded COSY spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S4a. HMQC spectrum of luteolin-7-O-β-D-glucoside (APB) in DMSO-d₆.

Fig. S4c. Expanded HMQC spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S5a. HMBC spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S5b. Expanded HMBC spectrum of luteolin-7-O-β-D-glucoside (APB) in DMSO-d₆.

Fig. S5c. Expanded HMBC spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S6. NOESY spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S7a. HSQC spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S7b. Expanded HSQC spectrum of luteolin-7-O- β -D-glucoside (APB) in DMSO- d_6 .

Fig. S7c. Expanded HSQC spectrum of luteolin-7-O- β -D-glucoside (**APB**) in DMSO- d_6 .

Fig. S8. ESI-MS spectrum of luteolin-7-O- β -D-glucoside (APB) in negative ion mode.

Fig. S9. Tafel plots in absence and presence of 600 ppm of MeOH, mixture and water extracts of *A. pseudocotula* in 1.0 M HCl.

Table-S1: Potentiodynamic polarization parameters obtained from Tafel plots for the corrosion of mild steel in 1.0 M HCl with 600 ppm of various extracts of *A. pseudocotula*.

Inhibitors	E _{corr}	I _{corr}	β_a	β_c	R_p	IE %	IE %
	(mV)	(μAcm^{-2})	(mV/dec)	(mV/dec)	_	Tafel	LPR
Blank	-486.6	213.0	99.85	- 110.73	54.5	-	-
MeOH	-477.6	18.0	73.8	-64.6	446.8	91.6	87.8
Mixture MeOH: H ₂ O (85:15)	-482.7	50.0	75.0	-77.9	206.3	76.5	73.6
Water	-478.7	37.9	78.4	-72.7	250.3	82.2	78.2

Fig. S10. Nyquist plots in absence and presence of 600 ppm of MeOH, mixture and water extracts of *A. pseudocotula* in 1.0 M HCl.

Table-S2:	Electrochemical	impedance	parameters	obtained	from	Nyquist	plots	for	mild	steel	in
1.0 M HCl	with 600 ppm of	f various ext	racts of A. p	oseudocot	ula.						

Inhibitors	$R_{ct} (\Omega \text{ cm}^2)$	C_{dl} (µF cm ⁻²)	θ	IE %
Blank	57.1	533.0	-	-
МеОН	445.3	145.0	0.87	87.2
Mixture MeOH: H ₂ O (85:15)	224.0	230.0	0.75	74.5
Water	274.0	250.0	0.79	79.2

Fig. S11. Tafel plots in absence and presence of *n*-BuOH and EtOAc extracts of *A. pseudocotula* in 1.0 M HCl.

Table-S3: Potentiodynamic polarization parameters obtained from Tafel plots for the corrosion of mild steel in 1.0 M HCl with 600 ppm of *A. pseudocotula* various extracts.

Inhibitors	E _{corr}	I _{corr}	β_a	β_c	R _p	IE %	IE %
	(mV)	$(\mu A cm^{-2})$	(mV/dec)	(mV/dec)		Tafel	LPR
Blank	- 486.6	213.0	99.85	- 110.73	54.5	-	-
<i>n</i> -BuOH extract	- 472.3	21.9	69.3	- 74.84	399.1	89.7	86.3
EtOAc extract	- 454.9	33.2	78.0	- 86.25	303.8	84.4	82.1

Fig. S12. Nyquist plots in absence and presence of *n*-BuOH and EtOAc extracts of *A*. *pseudocotula* in 1.0 M HCl.

Table-S4: Electrochemical impedance parameters obtained from Nyquist plots for mild steel in 1.0 M HCl with 600 ppm of *A. pseudocotula* various extracts.

Inhibitors	$R_{ct} (\Omega \text{ cm}^2)$	C_{dl} (µF cm ⁻²)	θ	IE %
Blank	57.1	533.0	-	-
<i>n</i> -BuOH extract	428.5	149.0	0.87	86.7
EtOAc extract	331.4	142.0	0.83	82.8

Fig. S13. Tafel plots in absence and presence of various fractions of *n*-BuOH extracts of *A*. *psuedocotula* in 1.0 M HCl.

Table-S5: Potentiodynamic polarization parameters obtained from Tafel plots for the corrosion of mild steel in 1.0 M HCl with 600 ppm of various fractions of *A. pseudocotula n*-BuOH extarcts.

Inhibitors	E _{corr}	I _{corr}	β_a	β_c	R_p	IE %	IE %
	(mV)	$(\mu A cm^{-2})$	(mV/dec)	(mV/dec)		Tafel	LPR
Blank	- 486.6	213.0	99.85	- 110.73	54.5	-	-
AP-1	- 487.9	55.5	74.7	- 71.8	193.9	73.9	71.9
AP-2	-476.3	47.8	81.8	- 86.9	210.9	77.6	74.2
AP-3*	- 510.1	11.7	53.1	-66.0	1007.5	94.5	94.6
AP-4	- 479.3	38.2	86.2	- 84.1	279.3	82.1	80.5

* Tested with 200 ppm.

Fig. S14. Nyquist plots in absence and presence of various fractions of *n*-BuOH extracts of *A*. *psuedocotula* in 1.0 M HCl.

Table-S6:	Electrochemical impedance parameters obtained from Nyquist plots for mild steel in
1.0 M HCl	with 600 ppm of various fractions of A. pseudocotula n-BuOH extarcts.

Inhibitors	R_{ct} (Ω cm ²)	C_{dl} (µF cm ⁻²)	θ	IE %
Blank	57.1	533.0	-	-
AP-1	217.6	226	0.74	73.8
AP-2	224.8	190	0.75	74.6
AP-3*	1040.0	175.0	0.95	94.5
AP-4	309.4	207	0.82	81.6

* Tested with 200 ppm.