Electronic Supplementary Information

Total synthesis and stereochemical assignment of cryptolatifolione

Luiz F. T. Novaes,[†] Ariel M. Sarotti,[‡] Ronaldo A. Pilli*,[†]

[†]Departmento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas (Unicamp), CP 6154, CEP 13084-971, Campinas, São Paulo, Brazil

[‡]Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK Rosario, Argentina

*E-mail: pilli@iqm.unicamp.br

Homepage: http://www.pilli.iqm.unicamp.br

Table of Contents:

I.	Spectral data and chromatograms	S2
II.	Computational methods	S34
III.	References	S41

I. Spectral data and chromatograms.

HPLC:Chiralpak® IA column, hexanes:i-PrOH 98:2, 1.0 mL/min, 224.0 nm

HPLC of racemic and *meso* compound derivative:

Compound	Retention time (min)	Area %
meso	4.98	46.6
R,R	6.33	25.5
S,S	6.74	27.9

Enantioenriched compound derivative:

Acquisition Time (sec)	0.5439	Comment	LFTN368	Date	21 Jul 2014 18:45:	36				
Date Stamp	21 Jul 2014 18:45:	36								
File Name	C:\Users\Luiz\Des	ktop∖Luiz∖Mestrado jan14-ju	n15\Projetos\Crypto	moscatone E3\NMR\5 - ally	l alcohol - jul21lftH2	\3\PDATA\1\1r				
Frequency (MHz)	62.90	Nucleus	13C	Number of Transients	100	Origin	spect			
Original Points Count	8192	Owner	root	Points Count	32768	Pulse Sequence	zgpg30			
Receiver Gain	645.10	SW(cyclical) (Hz)	15060.24	Solvent	CHLOROFORM-d					
Spectrum Offset (Hz)	6294.0796	Spectrum Type	STANDARD	Sweep Width (Hz)	15059.78	Temperature (degree C)	25.260			
Spectrum Offset (Hz) 5 - C13.esp 1.0 0.9 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.4 0.3 0.2 0.1	6294.0796	Spectrum Type	STANDARD	Sweep Width (Hz)		Temperature (degree C) 62,68 62,68 62,68	25.260			
o water and the second second	t in an in the second of the	ronning and the sector and the sector of the	ndilan on al New and a balance of the second se	etinaly and the second seco	eyell ^a hadhadhallanartinnyarra	mananing/anyonopialainaanyolanolaila	alalaan ahaala (aalaa ka k	ndd Heining Halt	adamiddfordyg Yddig byddydd	an the second
176 168	160 152	144 136 128	120 112 1	04 96 88 8 Chemical Shift (0 72 64 ppm)	56 48 40	32 24	16	8 () -8

Acquisition Time (sec)	3.1654	Comment	LFTN449	Date	22 Oct 2014 16:25:04		
Date Stamp	<i>tamp</i> 22 Oct 2014 16:25:04			File Name	\\nmrsparc.iqm.unicamp.br\espectros\bruker250\2014\out14\data\Pilli\nmr\out22lft		r250\2014\out14\data\Pilli\nmr\out22lftH1\1\PDATA\1\1r
Frequency (MHz)	250.13	Nucleus	1H	Number of Transients	17	Origin	spect
Original Points Count	16384	Owner	root	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	1625.50	SW(cyclical) (Hz)	5175.98	Solvent	CHLOROFORM-	d	
Spectrum Offset (Hz)	1750.4702	Spectrum Type	STANDARD	Sweep Width (Hz)	5175.83	Temperature (degree C	23.560
LFTN449H.esp		6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.00 0.11 0.11 0.11 0.11 0.11 0.12 0.12	5.14 5.14 5.12 5.12 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14		2.24 2.23 2.33 2.33 2.33 2.33 2.33 2.33	
0.9	O OAc						
0.7	16						
9.0							
Normaliz							
0.4							
0.3							
0.2				I			
0.1		<u></u>					r A
0			Millen				When he have h
		1.08	1.05 1.01 3	3.00 1.13		4.32 4.421.4	7
8.5	8.0 7.5	7.0 6.5	6.0 5.5	5.0 4.5 4.0 Chemical SI	3.5 3 nift (ppm)	3.0 2.5 2.0	1.5 1.0 0.5 0 -0.5 -1.0

GC: HP-5 Crosslinked 5% PH ME Siloxane column (30 m x 0.32 mm x 0.25 μ m), temperature ramp: 120 °C for 1 min, 10 °C/min to 150 °C, 150 °C for 2 min.

Compound	Retention time (min)	Area %
anti	4.68	21.0
syn	4.79	79.0

III. Computational methods

All DFT calculations were performed using Gaussian $09.^1$ Density functional theory (DFT) calculations were carried out with the UB3LYP functional² and the 6-31+G** basis set. Geometries for all structures were fully optimized and the nature of the stationary points found was confirmed by frequency calculations. Reported thermochemical properties include zero-point energies (ZPEs) and Gibbs free energies, computed at 1 atm and 298.15 K and were not scaled.

Conformational searches were performed to locate the minimum energy conformers of all the structures. Initially, a large number of geometries were generated using the conformational search module of Hyperchem³ with the MM+ method.⁴ Selected structures were then successively reoptimized at the UB3LYP/6-31G* and UB3LYP/6-31+G** levels of theory.

UB3LYP/6-31+G** optimized geometries (global minima) found for the three allylic radicals derived from compound 9.

UB3LYP/6-31+G** optimized geometries (global minima) found for the three allylic radicals derived from compound 21.

[9-H]-Rad-(C-2)

UB3LYP/6-31+G** Geometry					
C 0	1.788390	0.486261	-1.320965		
O 0	0.828616	-0.008160	0.895679		
C 0	0.598584	-0.082471	-0.536943		
C 0	-0.711101	0.647535	-0.809307		
C 0	-1.935840	0.027657	-0.142095		
C 0	-3.217660	0.858129	-0.332417		
C 0	-3.204370	2.147451	0.444065		
C 0	-3.352121	3.366645	-0.082736		
O 0	-2.120956	-1.280531	-0.763498		
C 0	-2.731305	-2.246275	-0.035290		
O 0	-3.147609	-2.081335	1.093581		
C 0	-2.809299	-3.540402	-0.808884		
C 0	3.075687	-0.115264	-0.829631		
C 0	3.138858	-0.555786	0.485500		
C 0	2.038769	-0.456153	1.327844		
H 0	1.632742	0.278652	-2.387342		
H 0	1.804122	1.584238	-1.218348		
Н0	0.494893	-1.148269	-0.781843		
Н0	-0.618198	1.683375	-0.464632		
Н0	-0.874369	0.677672	-1.894184		
Н0	-1.753342	-0.133464	0.923183		
Н0	-3.369983	1.055387	-1.400837		
H 0	-4.057859	0.244603	0.015460		
H 0	-3.077123	2.049654	1.523077		
H 0	-3.352738	4.257639	0.538353		
Η0	-3.485824	3.514393	-1.152404		
Н0	-3.414459	-4.257639	-0.254688		
Н0	-1.802078	-3.945581	-0.951422		
Н0	-3.237330	-3.368402	-1.800421		
Η0	3.942229	-0.156487	-1.480997		
H 0	4.057859	-0.960581	0.898967		
H 0	2.047645	-0.682011	2.387342		
Num	ber of Imag	ginary Freq	uencies = 0		
	Energy =	-693.17535	1303		
ZPE = -692.906662					
G = -692.953385					

[9-H]-Rad-(C-5)

UB3LYP/6-31+G** Geometry					
O 0	0.735381	-0.394376	0.876333		
C 0	1.922805	-1.072548	1.279588		
C 0	0.468477	-0.463705	-0.531125		
C 0	-0.773744	0.392154	-0.791428		
C 0	-2.031503	-0.101326	-0.083709		
C 0	-3.226433	0.858504	-0.221654		
C 0	-3.050270	2.133842	0.558202		
C 0	-3.104431	3.366164	0.044388		
O 0	-2.376786	-1.377564	-0.706633		
C 0	-3.050303	-2.285980	0.037554		
O 0	-3.394072	-2.100501	1.187645		
C 0	-3.307803	-3.547131	-0.752194		
C 0	3.120925	-0.647089	0.482000		
C 0	2.935551	-0.113796	-0.786680		
C 0	1.661537	-0.012966	-1.331779		
Н0	1.773757	-2.167315	1.201947		
Н0	2.048620	-0.840967	2.342449		
Н0	0.232697	-1.513728	-0.791660		
H 0	-0.566318	1.415146	-0.460223		
Н0	-0.961107	0.425965	-1.872149		
H 0	-1.826270	-0.291823	0.972236		
H 0	-3.399012	1.078425	-1.282539		
H 0	-4.111572	0.332435	0.157052		
H 0	-2.879582	2.014375	1.628957		
H 0	-2.987394	4.247330	0.668465		
H 0	-3.274751	3.535905	-1.016748		
H 0	-2.358056	-4.002016	-1.050597		
H 0	-3.859629	-3.312523	-1.667435		
H 0	-3.877525	-4.247330	-0.141616		
H 0	4.111572	-0.784161	0.904842		
H 0	3.795625	0.216069	-1.364616		
H 0	1.505253	0.352785	-2.342449		
Num	ber of Imag	ginary Freq	uencies = 0		
	Energy =	-693.16470	1594		
ZPE = -692.896559					
G = -692.943460					

[9-H]-Rad-(C-9)

UB3LYP/6-31+G** Geometry					
C 0	2.664750	-1.703051	1.106031		
O 0	1.998571	-0.757039	-1.032025		
C 0	4.222649	-0.246055	-0.170086		
C 0	3.130964	0.097741	-1.147651		
C 0	4.017679	-1.086357	0.849572		
C 0	1.576397	-0.958188	0.322230		
C 0	0.255403	-1.719902	0.268943		
C 0	-0.900356	-0.924627	-0.360735		
C 0	-2.103711	-1.781216	-0.628288		
C 0	-3.241186	-1.852475	0.165544		
C 0	-4.330694	-2.674115	-0.084965		
O 0	-1.220625	0.147887	0.571481		
C 0	-1.582853	1.350703	0.055251		
O 0	-1.626486	1.597026	-1.131216		
C 0	-1.932442	2.323678	1.155774		
H 0	2.430235	-1.667870	2.178464		
H 0	2.670548	-2.766471	0.824094		
H 0	5.192749	0.220789	-0.328487		
H 0	2.822911	1.151833	-1.024422		
Н0	3.484833	-0.015854	-2.178464		
H 0	4.831447	-1.337452	1.526682		
H 0	1.415899	0.026013	0.792573		
Н0	0.407727	-2.632171	-0.319699		
Н0	-0.036834	-2.027449	1.279995		
H 0	-0.558031	-0.468807	-1.294274		
H 0	-2.031499	-2.417286	-1.509528		
Η0	-3.280038	-1.210885	1.044600		
H 0	-5.192749	-2.682332	0.572771		
H 0	-4.355249	-3.331212	-0.949889		
H 0	-1.198431	2.279774	1.964402		
H 0	-2.906869	2.055144	1.578024		
H 0	-1.988424	3.331212	0.743527		
Num	ber of Imag	ginary Freq	uencies = 0		
	Energy =	-693.16428	1959		
ZPE = -692.896120					
G = -692.942963					

ſ	21-	• H]•	-Rad	-(C	-2)
				•	

	UB3LYP/6-31+G** Geometry				
C 0	-0.881349	-0.164174	0.957116		
O 0	-1.483488	0.682391	-1.277966		
C 0	-0.475714	-0.030948	-0.518378		
C 0	0.823547	0.732876	-0.766122		
C 0	2.073775	0.065111	-0.201399		
C 0	3.359209	0.876193	-0.448083		
C 0	3.408454	2.157536	0.339527		
C 0	3.492071	3.380061	-0.186984		
C 0	2.812607	-2.220391	-0.189120		
O 0	3.258573	-2.102013	0.931634		
C 0	2.857644	-3.482183	-1.019385		
C 0	-2.282405	-0.698776	1.064772		
C 0	-3.168076	-0.439998	0.029751		
C 0	-2.766883	0.277828	-1.086911		
O 0	2.195507	-1.223190	-0.869323		
$\rm H 0$	-0.167843	-0.824862	1.466304		
Η0	-0.795815	0.820326	1.448938		
Η0	-0.405002	-1.037056	-0.952310		
H 0	0.943716	0.861901	-1.848788		
Η0	0.740813	1.736121	-0.332401		
H 0	1.975522	-0.128179	0.870716		
H 0	4.203950	0.239694	-0.154125		
H 0	3.455379	1.081286	-1.521422		
Н0	3.379844	2.047733	1.425053		
Н0	3.537566	4.269205	0.436086		
H 0	3.527537	3.538293	-1.263042		
Н0	1.842364	-3.800145	-1.278484		
Н0	3.360796	-4.269205	-0.456779		
Н0	3.389691	-3.295884	-1.958025		
Η0	-2.594209	-1.230137	1.958025		
Н0	-4.203950	-0.763992	0.080817		
Η0	-3.426718	0.604447	-1.882605		
Num	ber of Imag	ginary Freq	uencies = 0		
	Energy =	-693.17386	7334		
ZPE = -692.905066					
	G=-	692.952144			

	$UB3LYP/6-31+G^{**}$ Geometry					
O 0	-1.452208	0.025143	-1.560979			
C 0	-2.716785	-0.592878	-1.362826			
C 0	-0.419629	-0.461391	-0.697447			
C 0	0.814572	0.392510	-1.018486			
C 0	2.117940	-0.100326	-0.399023			
C 0	3.310837	0.835191	-0.671734			
C 0	3.202281	2.153234	0.045911			
C 0	3.182201	3.349893	-0.542557			
C 0	3.110570	-2.283039	-0.251596			
O 0	3.530263	-2.052268	0.861939			
C 0	3.300644	-3.578997	-1.005461			
C 0	-3.157476	-0.554252	0.071712			
C 0	-2.198520	-0.438460	1.065899			
C 0	-0.848100	-0.402228	0.746045			
O 0	2.395553	-1.401578	-0.991686			
H 0	-2.692309	-1.638894	-1.729974			
H 0	-3.415850	-0.048252	-2.008220			
H 0	-0.194531	-1.510672	-0.969744			
H 0	0.925004	0.418862	-2.109067			
H 0	0.633742	1.420501	-0.686359			
H 0	2.024159	-0.247258	0.681265			
H 0	4.214868	0.313684	-0.331391			
H 0	3.405378	0.993081	-1.753140			
H 0	3.147257	2.096295	1.134508			
H 0	3.116752	4.269175	0.033197			
H 0	3.238179	3.456720	-1.624073			
H 0	2.328029	-4.024275	-1.239736			
H 0	3.888216	-4.269175	-0.399216			
H 0	3.809696	-3.390408	-1.956272			
H 0	-4.214868	-0.644682	0.302417			
H 0	-2.504537	-0.391783	2.109067			
H 0	-0.090759	-0.368744	1.523527			
Number of Imaginary Frequencies = 0						
	Energy =	-693.16295	1718			
	ZPE =	-692.89472	20			
G = -692.941998						

[21-	-HI-	-Ra	d-(C -	9)
	**!	1.00	~ (\sim	~,

UB3LYP/6-31+G** Geometry							
C 0	1.843884	-0.780506	0.875862				
O 0	2.608833	-1.755858	-1.211488				
C 0	4.186695	-0.455080	0.117916				
C 0	3.859791	-1.086899	-1.208663				
C 0	3.271088	-0.335758	1.081078				
C 0	1.558803	-0.986483	-0.619011				
C 0	0.269217	-1.752669	-0.918083				
C 0	-1.008434	-1.097618	-0.395348				
C 0	-2.238625	-1.887384	-0.714829				
C 0	-3.278547	-2.090190	0.184531				
C 0	-4.424547	-2.817082	-0.086406				
C 0	-1.707912	1.207460	-0.358499				
O 0	-2.144089	1.084342	0.766174				
C 0	-1.779643	2.471805	-1.184501				
O 0	-1.089887	0.220994	-1.049719				
H 0	1.156977	-0.029988	1.289973				
H 0	1.651601	-1.714198	1.426934				
H 0	5.205354	-0.097331	0.257428				
Н0	3.890681	-0.324195	-2.010000				
Н0	4.605917	-1.848422	-1.467768				
Н0	3.534602	0.102550	2.041920				
H 0	1.516524	0.000185	-1.107159				
Н0	0.192629	-1.888311	-2.003588				
Η0	0.346445	-2.754317	-0.476684				
Η0	-0.954112	-0.916932	0.680373				
H 0	-2.313583	-2.296514	-1.722161				
Η0	-3.180006	-1.635982	1.170141				
Η0	-5.205354	-2.941453	0.656320				
H 0	-4.580305	-3.285710	-1.054653				
H 0	-2.166306	3.285710	-0.570129				
Η0	-2.442942	2.312990	-2.041920				
H 0	-0.792391	2.731035	-1.578887				
Number of Imaginary Frequencies = 0							
Energy = -693.164661124							
ZPE = -692.896341							
G = -692.943207							

IV. References.

1 - Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y. Kitao, O.; Nakai, H. Vreven, T.; Montgomery, J. A., Jr.,; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. and Fox, D. J. Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.

2 - (a) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* **1988**, *37*, 785-789. (b) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 1372-1377. (c) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648-5652.

3 - Hyperchem Professional Release 7.52, Hypercube, Inc., 2005.

4- Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127-8134.