Electronic Supplementary Information

Effect of "push-pull" sensitizers with modified conjugation bridges on the performance of p-type dye-sensitized solar cells

Fengying Zhang, Pei Yu, Wei Shen, Ming Li, Rongxing He*

Key Laboratory of Luminescence and Real-Time Analytical chemistry (Southwest

University), Ministry of Education, College of Chemistry and Chemical Engineering,
Southwest University, Chongqing 400715, China

[^0]
Table Captions

Table S1 Calculated molecular orbital energy levels (HOMO and LUMO, eV) for sensitizer T-D-1S-A-1S with different functionals.

Table S2 Calculated wavelength of maximum absorption $\lambda_{\max }(\mathrm{nm})$ and corresponding energy $\mathrm{E}_{\lambda_{\max }}(\mathrm{eV})$ of T-D-1S-A-1S in acetonitrile solution with PBE0/6-31G(d) geometries.

Table S3 Electronic transition data obtained at BMK/6-31G(d) level for Q band and B band of sensitizers, respectively.

Table S4 Electron density difference plots of electronic transition in Q band for all the dyes binding with NiO or $(\mathrm{NiO})_{9}$, which are performed in acetonitrile solvent using BMK functional together with $6-31 \mathrm{G}(\mathrm{d})$ basis set.

Figure Captions

Fig. S1 Geometries of all the dyes binding with NiO or $(\mathrm{NiO})_{9}$, which are optimized at $\mathrm{PBE} 0 / 6-31 \mathrm{G}(\mathrm{d})$ level.

Fig. S2 The diagram of several important performance parameters for designed sensitizers. (a) The light-harvesting efficiency at maximum wavelength. (b) The fraction of electron exchange in the process of electron transfer. (c) The driving force of hole injection. (d) The driving force of regeneration. (e) The driving force of recombination.

Table S1 Calculated molecular orbital energy levels (HOMO and LUMO, eV) for sensitizer T-D-

1S-A-1S with different functionals.

Scheme	HOMO	LUMO
(eV)	(eV)	
Exp $^{\text {a }}$	-5.53	-3.35
M062X/6-31G(d)	-6.38	-2.14
LC-WB97XD/6-31G(d)	-7.01	-1.28
PBE0/6-31G(d)	-5.53	-3.17
B3LYP/6-311G(d, p)	-5.51	-3.15

${ }^{\text {a }}$ Experimental value from Ref 25.

Table S2 Calculated wavelength of maximum absorption $\lambda_{\max }(\mathrm{nm})$ and corresponding energy
$\mathrm{E}_{\lambda \max }(\mathrm{eV})$ of T-D-1S-A-1S in acetonitrile solution with PBE0/6-31G(d) geometries.

Scheme	$\lambda_{\max }(\mathrm{nm})$	$\mathrm{E}_{\lambda \max }(\mathrm{eV})$
Exp $^{\text {a }}$	$488 / 369$	$2.54 / 3.36$
PBE0/6-31G(d)	$573 / 381$	$2.16 / 3.25$
CAM-B3LYP/6-31G(d)	$454 / 335$	$2.73 / 3.70$
BMK/6-31G(d)	$498 / 344$	$2.49 / 3.60$
Experimental	value	from

Table S3 Electronic transition data obtained at BMK/6-31G(d) level for Q band and B band of sensitizers, respectively.

Molecules		Q band		B band	
		$\begin{gathered} \lambda_{1} \\ (\mathrm{~nm}) \end{gathered}$	Major configuration	$\begin{gathered} \lambda_{2} \\ (\mathrm{~nm}) \end{gathered}$	Major configuration
T-D-1S-A-1S	Dye	498	$\mathrm{H} \rightarrow \mathrm{L}$ (91\%), $\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (5\%)	344	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (53\%), $\mathrm{H}-2 \rightarrow \mathrm{~L}(33 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}(6 \%), \mathrm{H} \rightarrow \mathrm{L}(6 \%)$
	NiO-Dye	497	$\mathrm{H} \rightarrow \mathrm{L}(91 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (5\%)	344	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (55\%), $\mathrm{H}-2 \rightarrow \mathrm{~L}$ (31\%), $\mathrm{H}-3 \rightarrow \mathrm{~L}$ (6\%), $\mathrm{H} \rightarrow \mathrm{L}(6 \%)$
	$(\mathrm{NiO})_{9}$-Dye	501	$\mathrm{H} \rightarrow \mathrm{L}(91 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}+1$ (5\%)	346	$\begin{aligned} & \mathrm{H}-3 \rightarrow \mathrm{~L}+1(50 \%), \mathrm{H}-4 \rightarrow \mathrm{~L}(35 \%), \mathrm{H}-11 \rightarrow \mathrm{~L}(6 \%), \mathrm{H} \rightarrow \mathrm{~L} \\ & (6 \%) \end{aligned}$
T-D-1S-A-2S	Dye	527	$\mathrm{H} \rightarrow \mathrm{L}(80 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (12\%)	372	$\mathrm{H} \rightarrow \mathrm{L}+2$ (84\%), $\mathrm{H}-2 \rightarrow \mathrm{~L}+2$ (6\%)
	NiO-Dye	525	$\mathrm{H} \rightarrow \mathrm{L}(80 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (13\%)	386	$\mathrm{H} \rightarrow \mathrm{L}+2$ (84\%), $\mathrm{H}-2 \rightarrow \mathrm{~L}+2$ (7\%)
	$(\mathrm{NiO})_{9}$-Dye	530	$\mathrm{H} \rightarrow \mathrm{L}(81 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (12\%)	365	$\mathrm{H} \rightarrow \mathrm{L}+2$ (84\%), $\mathrm{H}-3 \rightarrow \mathrm{~L}+2$ (6\%)
T-D-1S-A-3S	Dye	543	$\underset{(6 \%)}{\mathrm{H} \rightarrow \mathrm{~L}(65 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+1(22 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}}$	387	$\mathrm{H} \rightarrow \mathrm{L}+2$ (80\%), $\mathrm{H}-2 \rightarrow \mathrm{~L}+2$ (6\%)
	NiO-Dye	543	$\begin{gathered} \mathrm{H} \rightarrow \mathrm{~L}(64 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+1(23 \%), \mathrm{H}-2 \rightarrow \mathrm{~L} \\ (6 \%) \end{gathered}$	401	$\mathrm{H} \rightarrow \mathrm{L}+2$ (80\%), $\mathrm{H}-2 \rightarrow \mathrm{~L}+2$ (8\%)
	$(\mathrm{NiO})_{9}$-Dye	547	$\begin{gathered} \mathrm{H} \rightarrow \mathrm{~L}(66 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+1(21 \%), \mathrm{H}-2 \rightarrow \mathrm{~L} \\ (6 \%) \end{gathered}$	383	$\mathrm{H} \rightarrow \mathrm{L}+2$ (79\%), $\mathrm{H}-2 \rightarrow \mathrm{~L}+2$ (5\%)
T-D-2S-A-1S	Dye	504	$\mathrm{H} \rightarrow \mathrm{L}(88 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}+1$ (5\%)	385	$\mathrm{H} \rightarrow \mathrm{L}+2$ (74\%), $\mathrm{H}-1 \rightarrow \mathrm{~L}+2$ (15\%), $\mathrm{H} \rightarrow \mathrm{L}+1$ (6\%)
	NiO-Dye	504	$\mathrm{H} \rightarrow \mathrm{L}(89 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}+1$ (5\%)	395	$\mathrm{H} \rightarrow \mathrm{L}+2$ (72\%), $\mathrm{H}-1 \rightarrow \mathrm{~L}+2$ (15\%), $\mathrm{H} \rightarrow \mathrm{L}+1$ (8\%)
	$(\mathrm{NiO})_{9}$-Dye	508	$\mathrm{H} \rightarrow \mathrm{L}(88 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}+1(5 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}(5 \%)$	378	$\mathrm{H} \rightarrow \mathrm{L}+2$ (73\%), $\mathrm{H}-1 \rightarrow \mathrm{~L}+2$ (15\%), $\mathrm{H} \rightarrow \mathrm{L}+1$ (6\%)

	Dye	508	$\mathrm{H} \rightarrow \mathrm{L}(81 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}(12 \%)$
T-D-3S-A-1S	NiO-Dye	509	$\mathrm{H} \rightarrow \mathrm{L}(82 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}(11 \%)$
	$(\mathrm{NiO})_{9}$-Dye	511	$\mathrm{H} \rightarrow \mathrm{L}(79 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}(13 \%)$
T-D-1S-A-	Dye	497	$\mathrm{H} \rightarrow \mathrm{L}(92 \%)$
	NiO-Dye	496	$\mathrm{H} \rightarrow \mathrm{L}$ (93\%)
1N	$(\mathrm{NiO})_{9}$-Dye	501	$\mathrm{H} \rightarrow \mathrm{L}$ (92\%)
	Dye	497	$\mathrm{H} \rightarrow \mathrm{L}$ (89\%), $\mathrm{H} \rightarrow \mathrm{L}+3$ (5\%)
T-D-1S-A-	NiO-Dye	496	$\mathrm{H} \rightarrow \mathrm{L}(89 \%), \mathrm{H} \rightarrow \mathrm{L}+3$ (5\%)
2 N	$(\mathrm{NiO})_{9}$-Dye	502	$\mathrm{H} \rightarrow \mathrm{L}(89 \%), \mathrm{H} \rightarrow \mathrm{L}+2$ (5\%)
	Dye	482	$\mathrm{H} \rightarrow \mathrm{L}(86 \%), \mathrm{H} \rightarrow \mathrm{L}+2$ (8\%)
T-D-1S-A-			
3 N	$(\mathrm{NiO})_{9}$-Dye	487	$\mathrm{H} \rightarrow \mathrm{L}(86 \%), \mathrm{H} \rightarrow \mathrm{L}+2$ (8\%)
T-D-1N-A-	Dye	490	$\mathrm{H} \rightarrow \mathrm{L}$ (91\%), $\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (6\%)
1S	NiO-Dye	487	$\mathrm{H} \rightarrow \mathrm{L}$ (91\%), $\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (6\%)

	$(\mathrm{NiO})_{9}$-Dye	493	$\mathrm{H} \rightarrow \mathrm{L}$ (90\%), $\mathrm{H}-3 \rightarrow \mathrm{~L}+1$ (5\%)	341	$\mathrm{H}-3 \rightarrow \mathrm{~L}+1$ (62\%), $\mathrm{H}-8 \rightarrow \mathrm{~L}(25 \%), \mathrm{H} \rightarrow \mathrm{L}(6 \%)$
T-D-2N-A-	Dye	493	$\mathrm{H} \rightarrow \mathrm{L}(91 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (5\%)	342	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (60\%), $\mathrm{H}-2 \rightarrow \mathrm{~L}(28 \%), \mathrm{H} \rightarrow \mathrm{L}(6 \%)$
	NiO-Dye	493	$\mathrm{H} \rightarrow \mathrm{L}(91 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (5\%)	342	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (59\%), $\mathrm{H}-2 \rightarrow \mathrm{~L}(28 \%), \mathrm{H} \rightarrow \mathrm{L}(6 \%)$
1S	$(\mathrm{NiO})_{9}$-Dye	494	$\mathrm{H} \rightarrow \mathrm{L}$ (91\%), $\mathrm{H}-2 \rightarrow \mathrm{~L}+1$ (5\%)	342	$\begin{aligned} & \mathrm{H}-2 \rightarrow \mathrm{~L}+1(61 \%), \mathrm{H}-6 \rightarrow \mathrm{~L}(18 \%), \mathrm{H}-7 \rightarrow \mathrm{~L}(10 \%), \\ & \mathrm{H} \rightarrow \mathrm{~L}(6 \%) \end{aligned}$
	Dye	494	$\mathrm{H} \rightarrow \mathrm{L}$ (91\%), $\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (5\%)	313	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L}+3(49 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}+1(11 \%), \\ & \mathrm{H}-2 \rightarrow \mathrm{~L}+2(10 \%), \mathrm{H} \rightarrow \mathrm{~L}+2(10 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}+2(5 \%) \end{aligned}$
1S	NiO-Dye	494	$\mathrm{H} \rightarrow \mathrm{L}$ (91\%)	320	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L}+3(54 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}+1(11 \%), \mathrm{H} \rightarrow \mathrm{~L}+1(7 \%), \\ & \mathrm{H} \rightarrow \mathrm{~L}+2 \text { (6\%) } \end{aligned}$
	$(\mathrm{NiO})_{9}$-Dye	494	$\mathrm{H} \rightarrow \mathrm{L}$ (91\%), $\mathrm{H}-3 \rightarrow \mathrm{~L}+1$ (5\%)	308	$\begin{aligned} & H \rightarrow L+3(27 \%), H-6 \rightarrow L+1(14 \%), \\ & H-6 \rightarrow L+2(15 \%), H-1 \rightarrow L+5(13 \%), H-11 \rightarrow L+2(7 \%) \end{aligned}$

Table S4 Electron density difference plots of electronic transition in Q band for all the dyes binding with NiO or $(\mathrm{NiO})_{9}$, which are performed in acetonitrile solvent using BMK functional together with $6-31 \mathrm{G}(\mathrm{d})$ basis set. L is the electron transfer distance $(\AA), \Delta \mathrm{e}$ is the fraction of electron exchange $(|\mathrm{e}-|), \Omega$ is overlaps between the regions of density depletion and increment (Isovalue: $4 \times 10^{-4} \mathrm{e} \mathrm{au}^{-3}$), E is the energy of molecule (a.u.).

NiO-Dye	$(\mathrm{NiO})_{9}$-Dye
$\begin{aligned} & \mathrm{L}=3.238 \\ & \Delta \mathrm{e}=1.0467 \\ & \Omega=0.6404 \\ & \mathrm{E}=-3359.66 \\ & \mathbf{N i O} \end{aligned}$	$\begin{aligned} & \mathrm{L}=4.365 \\ & \Delta \mathrm{e}=1.1076 \\ & \Omega=0.5812 \\ & \\ & E=-5310.39 \end{aligned}$ $(\mathrm{NiO})_{9}-\mathrm{T}-\mathrm{D}-1 \mathrm{~S}-\mathrm{A}-1 \mathrm{~S}$
	$\begin{aligned} & \mathrm{L}=6.210 \\ & \Delta \mathrm{e}=1.0445 \\ & \Omega=0.3433 \\ & \mathrm{E}=-6413.54 \\ & (\mathbf{N i O})_{9}-\mathbf{T}-\mathrm{D}-\mathbf{1 S}-\mathbf{A - 2 S} \end{aligned}$
$\begin{aligned} & \mathrm{L}=3.816 \\ & \mathrm{~L}=1.0484 \\ & \Omega=0.3686 \\ & \mathrm{E}=-5565.98 \end{aligned}$	$\begin{aligned} & \mathrm{L}=4.203 \\ & \mathrm{e}=1.0596 \\ & \Omega=0.6012 \\ & \mathrm{E}=-7516.70 \\ & \\ & (\mathbf{N i O})_{9} \text {-T-D-1S-A-3S } \end{aligned}$
$\begin{aligned} & \mathrm{L}=4.351 \\ & \Delta \mathrm{e}=1.0621 \\ & \Omega=0.4377 \\ & \mathrm{E}=-3911.24 \\ & \text { NiO-T-D-2S-A-1S } \end{aligned}$	

| $\mathrm{L}=6.942$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{e}=1.1427$ |
| $\Omega=0.3000$ |

Electron densities move from the green area to the purple area.

NiO-T-D-1S-A-1S

NiO-T-D-1S-A-2S (NiO) $\mathbf{9}^{-T-D-1 S-A-2 S ~}$

NiO-T-D-1S-A-3S (NiO) $\mathbf{9}_{\mathbf{9}}$-T-D-1S-A-3S

NiO-T-D-2S-A-1S
$(\mathrm{NiO})_{9}-\mathrm{T}-\mathrm{D}-2 \mathrm{~S}-\mathrm{A}-1 \mathrm{~S}$

NiO-T-D-3S-A-1S
(NiO) $\mathbf{9}^{-T-D-3 S-A-1 S}$

NiO-T-D-1S-A-1N $\quad(\mathrm{NiO})_{9}$-T-D-1S-A-1N

NiO-T-D-1S-A-3N (NiO) $)_{9}$-T-D-1S-A-3N

NiO-T-D-1N-A-1S (NiO) $)_{9}$-T-D-1N-A-1S

NiO-T-D-2N-A-1S (NiO) $)_{9}$-T-D-2N-A-1S

NiO-T-D-3N-A-1S (NiO) $)_{9}$-T-D-3N-A-1S

Fig. S1 Geometries of all the dyes binding with NiO or $(\mathrm{NiO})_{9}$, which are optimized at PBE0/6$31 G(d)$ level.

(a)

(c)

(b)

(d)

$$
1.45
$$

(e)

Fig. S2 The diagram of several important performance parameters for designed sensitizers. (a) The light-harvesting efficiency at maximum wavelength. (b) The fraction of electron exchange in the process of electron transfer. (c) The driving force of hole injection. (d) The driving force of regeneration. (e) The driving force of recombination.

[^0]: *To whom correspondence should be addressed. E-mail: herx@swu.edu.cn.

