Electronic Supplementary Information for

Molecular Insight into the Dynamical Adsorption Behavior of Nanoscale Water Droplet on Heterogeneous Surface

Jun Zhang,*,^{†,‡} Jie Zhong,^{†,‡} Wen Li, ^{†,‡} Muhan Wang,^{†,‡} Bing Liu,^{†,‡} Zhen Li,^{†,‡}

Youguo Yan*,†,‡

[†]College of Science, China University of Petroleum, 266580 Qingdao, Shandong,

People's Republic of China

[‡]Key Laboratory of New Energy Physics & Materials Science in Universities of

Shandong, China University of Petroleum, 266580 Qingdao, Shandong, People's

Republic of China

Corresponding Authors

* Jun Zhang, Email: zhangjun.upc@gmail.com

* Youguo Yan, Email: yyg@upc.edu.cn

Radius/Å	8	9	10	11	12	13	14	15
Number	74	106	151	191	246	311	389	479
Radius/Å	16	17	18	19	20	21	22	
Number	584	702	831	980	112 5	1308	1506	

Table S1 The number of water molecules included in each water droplet

1. The

interaction energy between water droplet and -CH3 or -NH2 surface

During the adsorption process of the water droplet on the $-CH_3$ or $-NH_2$ surface, it would release energy. Then the total energy of the system would decrease. The released energy is the interaction energy (E_{inter}). Therefore, we calculate the intrinsic energy of water droplet without surface, the intrinsic energy of surface without water droplet, and the total energy of the water droplet and surface, respectively. Then, the interaction energy can be calculated by the following equation ¹⁻²:

$$E_{inter} = E_{total} - (E_{water} + E_{surface}) \tag{1}$$

Where E_{total} refers to the energy of whole system containing water droplet and surface, E_{water} is the intrinsic energy of water droplet without surface, and $E_{surface}$ represent the intrinsic energy of surface without water droplet. Similarly, E_{vdw} and E_{ele} contributed from Van der Waals and electrostatic interactions are also calculated. These calculated interaction energies are shown in Table S2.

Table S2. Interaction Energies E_{total} , Van der Waals Potentials E_{vdw} andElectrostatic Potentials E_{elec} Between Water and -CH3 or -NH2 Surfaces

Surface	Etotal/KJ·mol ⁻¹	$E_{coul}/KJ \cdot mol^{-1}$	E _{vdW} /KJ·mol ⁻¹
---------	-----------------------------	------------------------------	--

-NH ₂	-3832.72	-4699.52	866.80
-CH ₃	-100.36	-81.94	-18.42

Reference:

- 1 Y. Li, H. Li, K. Zhang, K. M. Liewb, Carbon, 2012, 2, 566–576.
- 2 X. Li, Y. Z. He, Y. Wang, J. C. Dong, Hui Li. Scientific Reports, 2013, 4, 3938.