Syntheses and Catalytic Application of Hydrido Iron(II) Complexes with [P,S]-

Chelating Ligands in Hydrosilylation of Aldehydes and Ketones

Benjing Xue, Hongjian Sun and Xiaoyan Li*

School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250199 Jinan, PR China E-mail: xli63@sdu.edu.cn; Fax: +86 531 88361350

Table of Contents

1 IR and NMR data of complexes 2-4	2-7
2 GC data for the catalytic reaction	8-10
3 NMR data of mechanism study	11-13
4 NMR data for the alcohol products	14-28

¹H NMR spectrum of complex 2

¹³C NMR spectrum of complex 2

¹H NMR spectrum of complex **3**

³¹P NMR spectrum of complex **3**

¹³C NMR spectrum of complex **3**

¹H NMR spectrum of complex **4**

¹³C NMR spectrum of complex 4

2 GC data for the catalytic reaction

Table 2 Catalytic Hydrosilylation of Aldehydes with 1 as a Catalyst^a

Entry	Substrates	^b Conversion (%)
1	СНО	80
2	CHO	80
3	CHO	40
4	CI	>99
5	Br CHO	>99
6	F CHO	>99
7	CHO CHO	>99
8	СНО	38
9	мео	14
10	Me CHO	21
11	CHO	96
12	F Br	98

"Catalytic reaction conditions: RCHO (1.0 mmol), (EtO)₃SiH (1.2 mmol) and *n*-dodecane (internal standard) (1.0 mmol), 2 ml THF, 50°C, 2h.

^bDetermined by GC analysis.

Entry	Substrates	^b Conversion(%)
1		56
2	F	46
3	Meo	57
4		64
5	G	53
6		37
7		71
8		64

Table 3 Catalytic Hydrosilylation of Ketones with 1 as a Catalyst^a

*a*Catalytic reaction conditions: RCOR' (1.0 mmol), (EtO)₃SiH (1.2 mmol) and *n*-dodecane (internal standard) (1.0 mmol), 2 ml THF, 50°C, 24h. *b*Determined by GC analysis.

3 NMR data of mechanism study

Stoichiometric reactions of complex 1 with benzaldehyde (³¹P NMR)

Stoichiometric reactions of complex 1 with triethoxysilane (³¹P NMR)

Stoichiometric reactions of complex 1 with benzaldehyde and triethoxysilane (¹H NMR)

Stoichiometric reactions of complex 1 with benzaldehyde and triethoxysilane (³¹P NMR)

4 NMR data for the alcohol products

¹H NMR (300 MHz, CDCl₃, δ): 7.40-6.99 (m, Ar, 4H), 4.70 (s, CH₂, 2H), 2.59 (s, OH, 1H).

¹H NMR (300 MHz, CDCl₃, δ): 7.50-7.21 (m, Ar, 4H), 4.80-4.78 (d, CH₂, 2H), 1.97 (t, OH, 1H).

CI

¹H NMR (300 MHz, CDCl₃, δ): 7.55-7.12 (m, Ar, 4H), 4.72 (s, CH₂, 2H), 2.31 (s, OH, 1H).

¹H NMR (300 MHz, CDCl₃, δ): 7.37-7.28 (m, Ar, 4H), 4.67 (d, CH₂, 2H), 1.75 (t, OH, 1H).

¹H NMR (300 MHz, CDCl₃, δ): 7.27-7.16 (m, Ar, 4H), 4.65 (s, CH₂, 2H), 2.35 (s, CH₃, 3H), 1.70 (s, OH, 1H).

¹H NMR (300 MHz, CDCl₃, δ): 7.31-6.86 (m, Ar, 4H), 4.61-4.59 (d, CH₂, 2H), 3.80 (s, CH₃, 3H), 1.73-1.69 (t, OH, 1H).

¹H NMR (300 MHz, CDCl₃, δ): 7.49-7.02 (m, Ar, 3H), 4.73-4.72 (d, CH₂, 2H), 1.98-1.94 (t, OH, 1H).

¹H NMR (300 MHz, CDCl₃, δ): 7.34-7.16 (m, Ar, 3H), 4.96 (s, CH₂, 2H), 2.20 (s, OH, 1H).

ОН

¹H NMR (300 MHz, CDCl₃, δ): 7.31-7.18 (m, Ar, 5H), 3.78 (t, CH₂, 2H), 2.81 (t, CH₂, 2H), 2.12 (s, OH, 1H).

¹H NMR (300 MHz, CDCl₃, δ): 7.39-6.28 (m, Ar, 3H), 4.57 (s, CH₂, 2H), 2.53 (s, OH, 1H).

СН2ОН

¹H NMR (300 MHz, CDCl₃, δ): 7.27-6.95 (m, Ar, 3H), 4.79 (s, CH₂, 2H), 2.31 (s, OH, 1H).

OH

¹H NMR (300 MHz, CDCl₃, δ): 7.40-7.24 (m, Ar, 5H), 4.88 (q, CH, 1H), 1.86 (s, OH, 1H), 1.51 (d, CH₃, 3H).

¹H NMR (300 MHz, CDCl₃, δ): 7.32-6.96 (m, Ar, 4H), 4.85-4.79 (q, CH, 1H), 2.54 (s, OH, 1H), 1.43 (d, CH₃, 3H).

¹H NMR (300 MHz, CDCl₃, δ): 7.31-7.26 (m, Ar, 4H), 4.88 (q, CH, 1H), 1.89 (s, OH, 1H), 1.47 (d, CH₃, 3H).

¹H NMR (300 MHz, CDCl₃, δ): 7.26-6.82 (m, Ar, 4H), 4.78 (q, CH, 1H), 3.76 (s, CH₃, 3H), 2.50 (s, OH, 1H), 1.42 (d, CH₃, 3H).

OH OH

¹H NMR (300 MHz, CDCl₃, δ): 7.85-7.25 (m, Ar, 7H), 5.07 (m, CH, 1H), 1.92 (s, OH, 1H), 1.58 (d, CH₃, 3H).

¹H NMR (300 MHz, CDCl₃, δ): 7.33-7.20 (m, Ar, 5H), 4.49 (t, CH, 1H), 2.50 (s, OH, 1H), 1.72 (m, CH₂, 2H), 0.86 (t, CH₃, 3H).

¹H NMR (300 MHz, CDCl₃, δ): 8.50-7.16 (m, Ar, 4H), 4.90 (q, CH, 1H), 1.50 (d, CH₃, 3H).

¹H NMR (300 MHz, CDCl₃, δ): 7.40-7.25 (m, Ar, 7H), 5.85 (d, CH, 1H), 2.20 (d, OH, 1H).

