ELECTRONIC SUPPLEMENTARY INFORMATION

for

Axial Ligand Modified High Valent Tin(IV) Porphyrins: Synthesis, Structure, Photophysical Studies and Photodynamic Antimicrobial Activities on Candida Albicans

Rahul Soman^a, Darpan Raghav^b, Subramaniam Sujatha^a, Krishnan Rathinasamy^{b*} and Chellaiah Arunkumar^{a*}

^aBioinorganic Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, India – 673 601.

^bSchool of Biotechnology, National Institute of Technology Calicut, Kozhikode, Kerala, India – 673 601.

Email: arunkumarc@nitc.ac.in, rathin@nitc.ac.in

CONTENTS

Fig. S1 Optical absorption spectra of tin(IV) porphyrins, 1–3 in acetone at 298 K.

Fig. S2 ¹H NMR spectrum of $H_2T(4$ -CMP)P in CDCl₃ at 298 K.

Fig. S3 ¹H NMR spectrum of $Sn^{IV}(Cl)_2T(4-CMP)P$ in CDCl₃ at 298 K.

Fig. S4 ¹H NMR spectrum of **1** in CDCl₃ at 298 K.

Fig. S5 ¹H NMR spectrum of **2** in DMSO-d6 at 298 K.

Fig. S6 ¹H NMR spectrum of **3** in CDCl₃ at 298 K.

Fig. S7 ESI-mass spectrum of 2.

Fig. S8 Fluorescence decay curves of freebase and tin(IV) porphyrins observed at 600 nm along with IRF measured in toluene and THF respectively. ($\lambda_{exc} = 460$ nm).

Fig. S9 Important molecular orbitals of $Sn^{IV}(Cl)_2T(4-CMP)P$ at the BP86/def2-SVP level of theory. Orbital energies (in eV) are given in parenthesis.

Fig. S10 Important molecular orbitals of **1** at the BP86/def2-SVP level of theory. Orbital energies (in eV) are given in parenthesis.

Fig. S11 Important molecular orbitals of **3** at the BP86/def2-SVP level of theory. Orbital energies (in eV) are given in parenthesis.

Fig. S1 Optical absorption spectra of tin(IV) porphyrins, 1–3 in acetone at 298 K.

Fig. S2 ¹H NMR spectrum of $H_2T(4$ -CMP)P in CDCl₃ at 298 K.

Fig. S3 ¹H NMR spectrum of $Sn^{IV}(Cl)_2T(4-CMP)P$ in CDCl₃ at 298 K.

Fig. S4 ¹H NMR spectrum of 1 in CDCl₃ at 298 K.

Fig. S5 1 H NMR spectrum of **2** in DMSO-d6 at 298 K.

Fig. S6 ¹H NMR spectrum of **3** in CDCl₃ at 298 K.

Fig. S7 ESI-mass spectrum of 2.

Fig. S8 Fluorescence decay curves of freebase and tin(IV) porphyrins observed at 600 nm along with IRF measured in toluene and THF respectively. (λ_{exc} = 460 nm).

Fig. S9 Important molecular orbitals of Sn^{IV}(Cl)₂T(4-CMP)P at the BP86/def2-SVP level of theory. Orbital energies (in eV) are given in parenthesis.

Fig. S10 Important molecular orbitals of 1 at the BP86/def2-SVP level of theory. Orbital energies (in eV) are given in parenthesis.

Fig. S11 Important molecular orbitals of 3 at the BP86/def2-SVP level of theory. Orbital energies (in eV) are given in parenthesis.