Supplementary Materials

Nitroxide-coated Silver Nanoparticles: Synthesis, Surface Physicochemistry and Antibacterial Activity

Magdalena Gozdziewska, Grzegorz Cichowicz, Katarzyna Markowska, Katarzyna Zawada and Elżbieta Megiel

Table of contents:

Fig. S1 ESI-MS spectrum of bisnitroxide disulfide (DiSS) as a sodium ion [M + Na]⁺.

Fig. S2 ESR spectrum of DiSS (see Scheme 1) in toluene solution at 293 K.

Fig. S3 XPS survey spectra of the synthesized AgNPs (sample AR2HH(-5)).

Fig. S4 XPS survey spectra of DiSS (see Scheme 1 in main text).

Fig. S5 EDS spectrum of the synthesized AgNPs for sample AI24RT (see Table 1 in main text).

Fig. S6 UV-vis absorption spectra of acetone solutions of the selected prepared samples directly after synthesis and 2 or 3 months later.

Fig. S7 UV-vis spectra recorded during synthesis (solution was diluted with DMF 20 x); first spectrum was recorded after addition of all amount of $NaBH_4$ solution (0h) and the next after a given period of time (reaction conditions the same as for AR2HH(-5) sample preparation).

Fig. S8 The number averaged hydrodynamic diameter distribution of the synthesized N-AgNPs obtained from DLS measurements.

Table S1 Results of EDS analysis performed for sample AI24RT (see Table 1 in main text).

Table S2 Binding Energy Values, full width at half maximum (FWHM) of peaks and atom concentrations derived from XPS analysis of DiSS (see Scheme 1 in the main text).

Calculations of the surface density of DiSS (sample AR2HH(-5)).

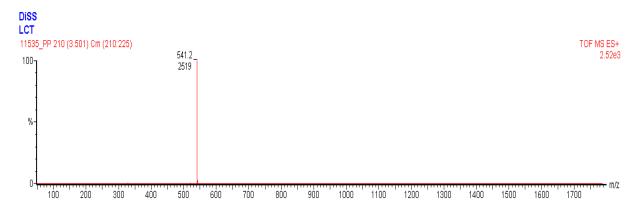


Fig. S1 ESI-MS spectrum of bisnitroxide disulfide (DiSS) as a sodium ion $[M + Na]^+$.

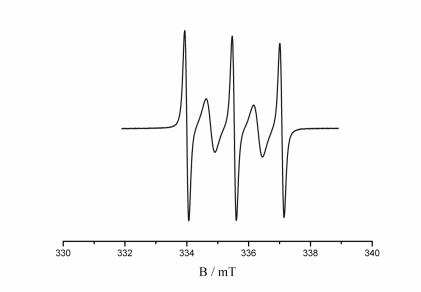


Fig. S2 ESR spectrum of DiSS (see Scheme 1) in toluene solution at 293 K.

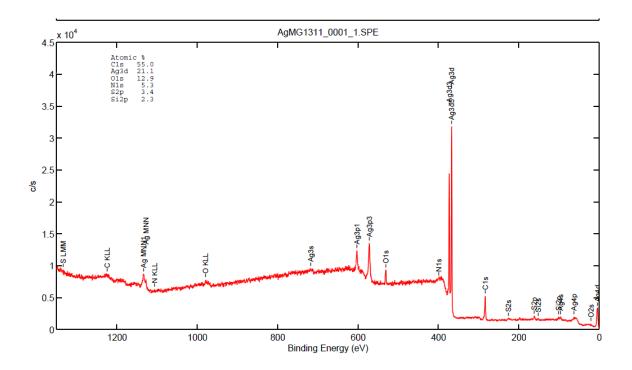


Figure S3. XPS survey spectra of the synthesized AgNPs (sample AR2HH(-5).

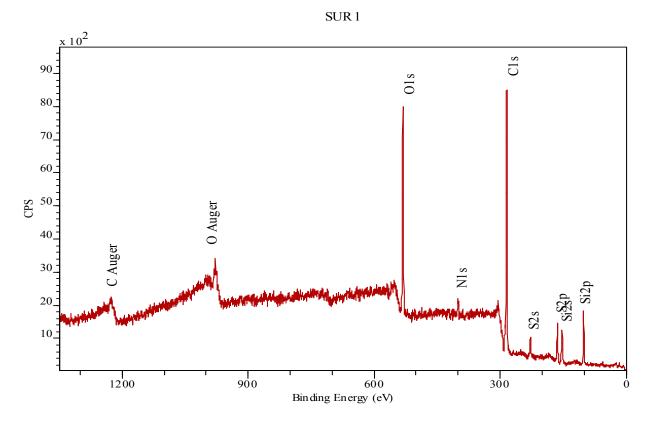
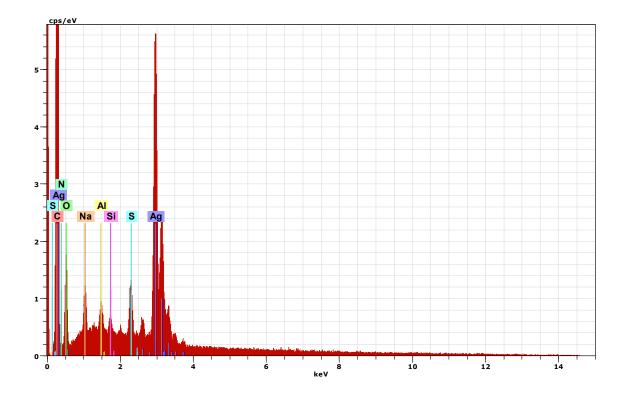
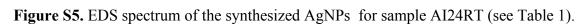
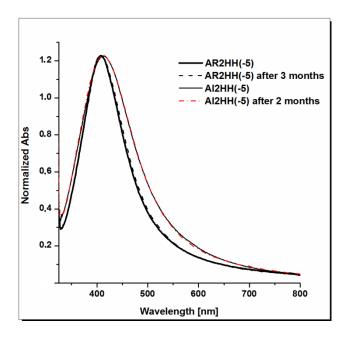
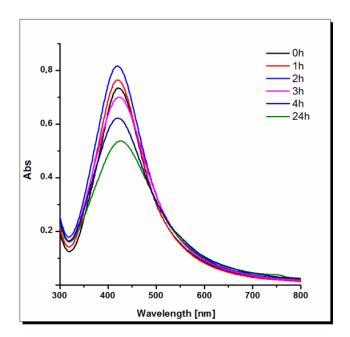




Figure S4. XPS survey spectra of DiSS (see Scheme 1).




Table S1

Results of EDS analysis performed for sample AI24RTH (see Table 1 in main test).

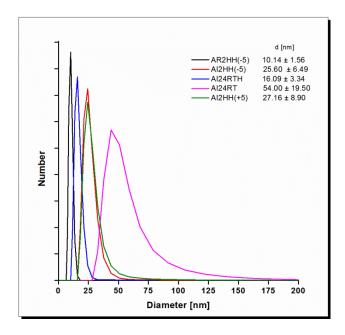

Spectrum:	Acquisit	ion			
Element	Series		norm. C [wt.%]		(1 Sigma) [wt.%]
Carbon Oxygen Silver Sulfur Silicon Aluminium Sodium Nitrogen	K-series	8.21 32.12 1.63	47.07 9.58 37.49 1.90 0.43 0.72 1.39 1.42	11.68 6.78 1.16 0.30 0.52 1.18	4.68 1.29 1.04 0.09 0.05 0.06 0.11 0.38
	Total:	85.67	100.00	100.00	

Figure S6. UV-vis absorption spectra of acetone solutions of the selected prepared samples directly after synthesis and 2 or 3 months later.

Figure S7. UV-vis spectra recorded during synthesis (solution was diluted with DMF 20 x) first spectrum was recorded after addition of all amount of $NaBH_4$ solution (0h) and next after a given period of time (reaction conditions the same as for AR2HH(-5) sample preparation).

Fig.S8 The number averaged hydrodynamic diameter distribution of the synthesized N-AgNPs obtained from DLS measurements.

Table S2

Orbital	Position	FWHM	Concentration
	[eV]	[eV]	[atom %]
N 1s	399.6	2.057	3.22
O1s	530.2	1.338	0.98
	531.9	1.338	17.3
	533.3	1.338	3.70
S 2p _{3/2}	163.6	1.247	1.97
_	166.8	2.205	0.48
S 2p _{1/2}	164.8	1.247	0.98
-	168.0	2.205	0.24
C 1s	284.6	1.323	44.2
	285.9	1.323	14.1
	287.1	1.014	1.22
	288.9	1.014	2.82

Binding Energy Values, full width at half maximum (FWHM) of peaks and atomic concentrations derived from XPS analysis of DiSS (see Scheme 1 in main text).

Calculations of the surface density of DiSS (sample AR2HH(-5))

r = 3.5 nm; V= 1.8 x 10⁻¹⁹ cm³; (ρ =10.5 g cm⁻³); m= 1.88 x 10⁻¹⁸ g; S=153.86 nm², N_{Ag}=10 510 TGA: 80% Ag, 20% DiSS; mass of DiSS per one nanoparticle m= 4.78 x 10⁻¹⁹ g; N_{ligands}= 548; d_{ligands} = 3.5 nm⁻²

XPS (S2s): Ag 23.7 % (atom %), S 2.5 %; N_{Ag}/N_{ligand} = 18.9; $N_{ligands}$ = 556; $d_{ligands}$ = 3.6 nm⁻²

XPS (N1s): Ag 23.7 % (atom %); N 2,8%; N_{Ag}/N_{ligand} = 16.9; $N_{ligands}$ = 621; $d_{ligands}$ = 4.0 nm⁻²

XPS (C1s): Ag 23.7 % (atom %); C 52.4%; N_{Ag}/N_{ligand}= 10.9; N_{ligands}= 964; d_{ligands}= 6.2 nm⁻²

XPS (O1s): Ag 23.7 % (atom %); O 13.6%; $N_{Ag}/N_{ligand} = 10.4$; $N_{ligands} = 1005$; $d_{ligands} = 6.5 \text{ nm}^{-2}$

where: nanoparticle radius, V – nanoparticle volume (idealized nanosphere), ρ - silver density, m – nanoparticle mass, S – nanoparticle surface, $d_{ligands}$ – DiSS area density