Silver nanoparticles decorated polyaniline-zeolite nanocomposite material based non-enzymatic electrochemical sensor for nanomolar detection of lindane

Balwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati

Supporting Information

1. Materials and instruments used

All chemicals were of analytical reagent grade and used as received without further purification. Tetraethylorthosilicate (TEOS, 98%), tetrapropylammonium hydroxide (TPAOH), propyltriethoxy silane (PrTES, 97%), 3-aminopropyl trimethoxysilane, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) ($EO_{20}PO_{70}EO_{20}$, Mw 5800) (hereafter designated as P123), and lindane were purchased from Sigma Aldrich, India. Aniline, ammonium peroxydisulphate (APS), and sodium borohydride were obtained from Spectrochem Pvt. Ltd., India. Silver nitrate (AgNO₃) was obtained from Fisher Scientific, India. Sodium dodecyl sulfate was obtained from S D Fine Chemical Ltd., India. Deionized water from Millipore Milli-Q system (Resistivity 18 MΩcm) was used in the electrochemical studies. Stock solution of lindane was prepared in methanol. 0.05 M tetra-n-butylammonium bromide (TBAB) solution (prepared in 60:40 (v/v) methanol-water) was used as the supporting electrolyte.

X-ray diffraction (XRD) patterns were recorded in the 20 range of 5-90° with a scan speed of 2°/min on a PANalytical X'PERT PRO diffractometer, using Cu Ka radiation $(\lambda=0.1542 \text{ nm}, 40 \text{ kV}, 40 \text{ mA})$ and a proportional counter detector. Nitrogen adsorption measurements were performed at 77 K by Quantachrome Instruments, Autosorb-IQ volumetric adsorption analyzer. Sample was out-gassed at 393 K for 3 h in the degas port of the adsorption apparatus. The specific surface area of zeolites was calculated from the adsorption data points obtained at P/P₀ between 0.05-0.3 using the Brunauer-Emmett-Teller (BET) equation. The pore diameter was estimated using the Barret-Joyner-Halenda (BJH) method. Scanning electron microscopy (SEM) measurements were carried out on a JEOL JSM-6610LV, to investigate the morphology of the materials. TEM investigations were carried out using FEI, Tecnai G² F30-S-T microscope operating at 300 kV. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was used here using the same microscope, which was equipped with a scanning unit and a HAADF detector from Fischione (model 3000). The compositional analysis was performed using energy dispersive X-ray spectroscopy (EDS, EDAX Inc.) attachment on the Tecnai G^2 F30. The sample was dispersed in ethanol using ultrasonic bath, and dispersed sample was mounted on a carbon coated Cu grid, dried, and used for TEM measurement. Thermogravimetric analysis (TGA) was performed on a TGA/DSC 1 STAR^e SYSTEM from Mettler Toledo instrument with temperature increments of 10 K/min in air stream.

2. Electroactive surface area

The $[Fe(CN)_6]^{3/4-}$ is one of the most extensively studied redox couple in electrochemistry, which exhibits one-electron transfer (n = 1). The electroactive surface area of the modified electrodes was calculated according to the Randles-Sevcik equation (Eq. 1).¹

$$I_{p} = (2.69 \text{ x } 10^{5}) \text{ n}^{3/2} \text{ AD}^{1/2} \text{ C } \text{v}^{1/2}$$
(1)

Where, I_p is the peak current of redox couple, n is the number of electrons participating in the redox reaction, A is the electroactive surface area (cm²), D is the diffusion coefficient of K₃[Fe(CN)₆] in the solution (cm²/s), C is the concentration of K₃[Fe(CN)₆] in the bulk solution (mol/cm³), and v is the scan rate (V/s).

3. Number of electrons transferred during lindane reduction

The number of electrons transferred during the reduction of lindane is calculated from the Randles-Sevcik equation for irreversible reduction processes by substituting the diffusion coefficient value of 0.89×10^{-5} cm²/s for lindane as reported in the literature.^{2, 3}

$$I_{p} = 2.99 \text{ x } 10^{5} \text{n}(\alpha n_{a})^{1/2} \text{ACD}^{1/2} \text{v}^{1/2}$$
(2)

where I_p is the reduction peak current, n is the total number of electrons transferred, α is the charge transfer coefficient, n_a is the number of electron involved in charge transfer step, A is the area of electrode (cm²), C is the concentration (mol/cm³), D is the diffusion coefficient (cm²/s), and v is scan rate (V/s).

Figure S1. SEM images for PANI, Nano-ZSM-5, and PANI-Nano-ZSM-5 materials.

Figure S2. TGA thermograms of PANI, Nano-ZSM-5, PANI-Nano-ZSM-5-Pr-NH₂, and PANI-Nano-ZSM-5 materials at a heating rate of 10 K/min recorded in air stream.

Figure S3. CV responses of various modified electrodes and bare GCE in 0.1 M KCl solution containing 1 mM of $[Fe(CN)_6]^{3-/4-}$ at a scan rate of 10 mV/s. Arrow indicates the starting point.

Figure S4. CVs of lindane (50 μ M) at various scan rates (10-300 mV/s) at AgNPs(5%)-PANI-Nano-ZSM-5/GCE. Inset shows the plot of peak currents vs. square root of scan rates. Arrow indicates the starting point.

Figure S5. DPVs in the presence of lindane (60 μ M) in 0.05 M TBAB solution in 60:40 (v/v) methanol-water (10 mL) at AgNPs-PANI-Nano-ZSM-5/GCE with different silver ratio. DPV parameters were selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20 mV/s. Arrow indicates the starting point.

Figure S6. DPVs of lindane at AgNPs(5%)-PANI-Nano-ZSM-5/GCE, AgNPs(5%)-PANI/GCE, and AgNPs(5%)-Nano-ZSM-5/GCE in the presence of lindane (60 μ M) in 0.05 M TBAB solution in 60:40 (v/v) methanol-water (10 mL). DPV parameters were selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20 mV/s. Arrow indicates the starting point.

Figure S7. DPVs at AgNPs(5%)-PANI-Nano-ZSM-5/GCE in the presence of lindane (60 μ M) and lindane (60 μ M) with various interfering agents (5 μ M) in 0.05 M TBAB solution in 60:40 (v/v) methanol-water (10 mL). DPV parameters were selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20 mV/s. Arrow indicates the starting point.

Scheme S1. Mechanistic representation for the electrochemical reduction of lindane at AgNPs(5%)-PANI-Nano-ZSM-5/GCE.

S.No.	Scan Rate (mV/s)	$E_{p/2}$ - E_p	ac
1.	10	189	0.25
2.	50	178	0.26
3.	100	171	0.28
4.	150	165	0.29
5.	200	159	0.30
6.	300	152	0.31

Table S1 Voltammetric data for the reduction of lindane (50 μ M) at AgNPs(5%)-PANI-Nano-ZSM-5/GCE at various scan rates.

^c From $E_{p/2}$ - $E_p = 1.857 \text{ RT}/\alpha F = 47.7/\alpha \text{ in mV at } 298 \text{ K}$

 $[\alpha > 0.5 \text{ indicates a stepwise mechanism, whereas a } \alpha << 0.5 \text{ implies a concerted mechanism}]$

References

- A. J. Bard and L. R. Faulkner, Electrochemical methods: Fundamentals and applications, Wiley New York, 1980, Vol. 2.
- P. R. Birkin, A. Evans, C. Milhano, M. I. Montenegro and D. Pletcher, *Electroanalysis*, 2004, 16, 583-587.
- 3. M. U. Anu Prathap and R. Srivastava, *Electrochim. Acta*, 2013, **108**, 145-152.