Supporting information

for

Amino acid derived highly luminescent, heteroatom-doped carbon dots for label-free detection of Cd²⁺/Fe³⁺, cell imaging and enhanced antibacterial activity

Paramita Karfa, ^aEkta Roy, ^aSantanu Patra^a, Sunil Kumar, ^aAbhrajyoti Tarafdar^b Rashmi Madhuri, ^{a,*} Prashant K. Sharma^{c,*}

^aDepartment of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand 826 004, INDIA ^bDepartment of Environmental Science and Engineering, Indian School of Mines, Dhanbad, Jharkhand 826 004, INDIA ^cFunctional Nanomaterials Research Laboratory, Department of Applied Physics, Indian School of Mines, Dhanbad, Jharkhand 826 004, INDIA

* Corresponding Author:

Email: rshmmadhuri@gmail.com; Tel: +91 9471191640

Scheme S1:Chemical formula of all the amino acids used for carbon dots synthesis.

Figure S1: FT-IR spectra of (A) glutamine, (B) methionine, (C) cysteine, (D) aspartic acid, (E) arginine, (F) lysine, (G) tyrosine and (H) glutamic acid-derived carbon dots.

Figure S2: Effect of NaCl concentration as ion effect on the stability of Cys-derived carbon dots.

Figure S3: Effect of pH on the stability of Cys-derived carbon dots.

Figure S4: Effect of light irradiation on the stability of Cys-derived carbon dots.

S.N.	Concentration (ng mL ⁻¹)	Au/CDs nanocomposite		AgNO ₃	
		24 h	48 h	24 h	48 h
1.	2000	-	-	-	-
2.	1000	-	-	-	-
3.	500	-	-	-	-
4.	250	-	-	-	-
5.	125	-	-	-	-
6.	75	-	-	-	-
7.	25	-	-	-	+
8.	20	-	+	+	+
9.	15	+	+	+	+

Table S1: Minimum Inhibitory Concentration (MIC) Tests of Au/CDs nanocomposite and AgNO₃ for E. Coli.

"-" sign indicates no bacterial growth; "+" sign indicates bacterial growth.

Table S2: Minimum Inhibitory Concentration (MIC) values of Cys-CDs against E. coli atdifferent pH values for 24h.

Bacteria	Concentration (ng mL ⁻¹)				
-	pH =5.5	pH =6.5	pH=7.5	pH=8.5	
E. coli	19.2	20.0	19.8	19.5	

Table S3: Comparative study for detection of metal ions by cysteine derived carbon dots and other reported methods.

S.N.	Source	Metal ion	Range (µg L ⁻¹)	LOD (µg L ⁻¹)	Real sample	Reference
1.	Banana peels	Fe ³⁺	112.0-896.0	11.81	-	39
2.	Honey	Fe ³⁺	0.31-5600.0	0.095	Human blood	22
3.	Citric acid	Fe ³⁺	56.0-108920.0	5.04	Real water	40
					sample	
4.	Citric acid	Fe ³⁺	0-28000.0	-	-	41
5.	Camphor	Cd^{2+} & Hg^{2+}	28.0-336.0	-	-	42
6.	Cysteine	Fe ³⁺	6.0-250.0	3.0	Different	This work
		Cd^{2+}	6.0-268.0	2.0	water samples	