Electronic Supplementary Material (ESI) for RSC Advances.

This journal is © The Royal Society of Chemistry 2015

Fig. S1 (a) CoSn-LDH (green line), CoAlSn-LDH (blue line) and LA⁻ intercalated CoSn-LDH precursor (black line). (b) Co_2SnO_4/Co_3O_4 (green line), $Co_2SnO_4/Co_3O_4/Al_2O_3$ (blue line), $Co_2SnO_4/Co_3O_4/C$ (black line) composites.

Figure S2

Fig. S2 HRTEM image of Co₂SnO₄/Co₃O₄/Al₂O₃/C composite.

Figure S3

Fig. S3 (a-c) SEM and (c-f) HRTEM images of different composites: (a, d) $Co_2SnO_4/Co_3O_4/C$, (b, e) Co_2SnO_4/Co_3O_4 , and (c, f) $Co_2SnO_4/Co_3O_4/Al_2O_3$.

Fig. S4 (a, b) HAADF-STEM images of Co₂SnO₄/Co₃O₄/Al₂O₃/C composite, and corresponding EDX mapping of elements Co, Sn, Al, and O.

Fig. S5 XPS spectra of Co_2SnO_4/Co_3O_4 for (a) Co 2p, (b) Sn 3d, $Co_2SnO_4/Co_3O_4/Al_2O_3$ for (c) Co 2p, (d) Sn 3d, (e) Al 2p, $Co_2SnO_4/Co_3O_4/C$ for (f) Co 2p, (g) Sn 3d, (h) C 1s.

Fig. S6 The first three charge-discharge profiles of different composite electrodes at 100 mA g^{-1} : (a) Co_2SnO_4/Co_3O_4 , (b) $Co_2SnO_4/Co_3O_4/Al_2O_3$, and (c) $Co_2SnO_4/Co_3O_4/C$.

Figure S7

Fig. S7 The plot of Coulombic efficiency vs. cycle number for the $Co_2SnO_4/Co_3O_4/Al_2O_3/C$ electrode.

Table S1

Table S1 Comparison of reversible specific capacity between the electrodes of $Co_2SnO_4/Co_3O_4/Al_2O_3/C$ and the Co_2SnO_4 - or Co_3O_4 - based composites reported.

Hybrid Ac Nanomaterials	tive material (wt. %)	Current Density (mA g ⁻¹)	Cycle Number	Specific Capacity (mA h g ⁻¹)	Reference
Co ₂ SnO ₄ nanocrystal	60	30	50	556	[43]
Co ₂ SnO ₄ /graphene	60	100	100	1000	[7]
Co ₂ SnO ₄ /MWCNTs	80	50	50	899	[42]
Co ₂ SnO ₄ /Co ₃ O ₄	60	100	50	703	[24]
Co ₃ O ₄ microsphere	50	50	30	1615	[47]
Co ₃ O ₄ /C	80	100	50	1079	[48]
Co_3O_4/α - Fe_2O_3	100	100	60	980	[49]
$SnO_2@Co_3O_4$	70	100	100	962	[50]
Co ₂ SnO ₄ /Co ₃ O ₄ /Al ₂ O	O ₃ /C 70	100	100	1170	this study