Supplementary Material

Phosphorescent chemosensor for Hg²⁺ based on iridium(III) complex coordinated with 4-phenylquinazoline and sodium carbazole dithiocarbamate

Qunbo Mei, ^a* Yujie Shi, ^a Qingfang Hua, ^a Bihai Tong^b*

^a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

^b College of Metallurgy and Resources, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China

* Corresponding author. e-mail: iamqbmei@njupt.edu.cn; tongbihai@ahut.edu.cn

Contents:

1. Supplementary spectra data (S1-S9)

3. GC-MS and NMR data (S10-S14)

Detection limit:

The detection limit was determined from the fluorescence titration data based on a reported method.¹ The fluorescence spectrum of probe $Ir(pqz)_2(cdc)$ was measured by six times and the standard deviation of blank measurement was achieved. To gain the slop, the fluorescent intensity data at 562 nm was plotted as a concentration of Hg²⁺. So the detection limit was calculated with the following equation:

Detection limit=3o/K

Where σ is the standard deviation of blank measurement, and K is the slop between the fluorescence versus Hg²⁺ concentration.

There was a good linearity at micro molar concentration levels between fluorescent intensity data at 562 nm and concentrations of Hg²⁺ in the range from 6×10^{-6} M to 24×10^{-6} M, indicating the probe $Ir(pqz)_2(cdc)$ can detect quantitatively relevant concentrations of Hg²⁺. The linear equation was found to be y=31.438x-106.557(R=0.998), where y is the fluorescent intensity data at 562 nm measured at a given Hg²⁺ concentration and x represents the concentration of Hg²⁺ added. So the detection limit for Hg²⁺ was calculated to be 25nM(Detection limit= $3\sigma/K=0.801/31.438 \times 10^{-6}$ M ≈ 25 nM).

Figure S1. Normalized response of fluorescence signal of $Ir(pqz)_2(cdc)$ in DCM+ MeCN (V_{DCM} : V_{MeCN} =10:1, 2.0×10⁻⁵ M) in the presence of increasing amount of Hg²⁺ (6×10⁻⁶ M to 24×10⁻⁶ M) predissolved in acetonitrile. (λ_{ex} =360nm; λ_{em} =562nm).

Figure S2. UV-vis spectra of $Ir(pqz)_2(cdc)$ in DCM+ THF ($V_{DCM}:V_{THF}=10:1$, $c = 2.0 \times 10^{-5}$ M) in the presence of increasing amount of Hg(ClO₄)₂ (0-1.5 equiv) predissolved in THF. Arrows indicate the absorptions that increase (up) and decrease (down) during the titration experiments.

Figure S3. Fluorescence emission spectra of $Ir(pqz)_2(cdc)$ in DCM+ THF (V_{DCM}:V_{THF}=10:1, 2.0×10⁻⁵ M, λ_{ex} =360nm) in the presence of increasing amount of Hg²⁺ (0-1.5 equiv) predissolved in THF.

Figure S4. UV-vis spectra of $Ir(pqz)_2(cdc)$ ($c = 2.0 \times 10^{-5}$) in the presence of 2 equiv of Hg²⁺ and 2 equiv of other metal ions at the same time in DCM+ MeCN(V_{DCM}:V_{MeCN}=10:1). Na⁺, Fe³⁺, Ag⁺, Cd²⁺, Cr³⁺, Co²⁺, Ni²⁺, Pb²⁺, Mg²⁺, K⁺, Zn²⁺ and Cu²⁺ were added, respectively.

Figure S5. UV-vis absorption responses of $Ir(pqz)_2(cdc)$ in DCM+ MeCN ($V_{DCM}:V_{MeCN}=10:1, 2.0 \times 10^{-5}$ M) to various 2 equiv of metal ions. Bars represent the final ($A_{(425nm)}$) absorption intensity. The black bars represent the free $Ir(pqz)_2(cdc)$ solution and the addition of various metal ions (2 equiv) to a solution of $Ir(pqz)_2(cdc)$. The red bars represent the change of the absorption intensity that occurs upon the subsequent addition of 2 equiv of Hg²⁺ to the above solution.

Figure S6. Emission spectra of $Ir(pqz)_2(cdc)$ ($c = 2.0 \times 10^{-5}$ M) in the presence of 2 equiv of Hg²⁺ and 2 equiv of other metal ions at the same time in DCM+ MeCN(V_{DCM}:V_{MeCN}=10:1). Na⁺, Fe³⁺, Ag⁺, Cd²⁺, Cr³⁺, Co²⁺, Ni²⁺, Pb²⁺, Mg²⁺, K⁺, Zn²⁺ and Cu²⁺ were added, respectively.

(a)

(b)

Figure S7. (a) UV-vis spectra of $Ir(pqz)_2(cdc)$ ($c = 2.0 \times 10^{-5}$ M) in the presence of main group metal salt and transition metal salt with different anions (2.0 equiv) in DCM+ MeCN($V_{DCM}:V_{MeCN}=10:1$). (b) Emission spectra of $Ir(pqz)_2(cdc)$ ($c = 2.0 \times 10^{-5}$ M) in the presence of main group metal salt and transition metal salt with different anions (2.0 equiv) in DCM+ MeCN($V_{DCM}:V_{MeCN}=10:1$).

Figure S8. Fluorescence intensity of $Ir(pqz)_2(cdc)$ in DCM + MeCN ($V_{DCM}:V_{MeCN}=10:1, 2.0 \times 10^{-5}$ M) contained different concentrations of Hg²⁺ (0-1.5 equiv) at $\lambda_{em} = 562$ nm.

Figure S9. Emission spectra of $Ir(pqz)_2(cdc)$ ($c = 2.0 \times 10^{-5}$ M) in the presence of 2 equiv of Hg²⁺ in 2 mL DCM and the addition of various solvents(10µL). acetone, DMF, DMSO, n-hexane, diethyl ether, pyridine, petroleum ether, ethyl acetate, EtOH, acetonitrile, toluene, MeOH and Blank were added, respectively.

Figure S10. Emission spectra of $Ir(pqz)_2(cdc)$ ($c = 2.0 \times 10^{-5}$ M) with 2 equiv of Hg²⁺ in the presence of MeCN(10µL) and other various solvents(10µL) at the same time in 2 mL DCM solution.

Figure S11. Fluorescence responses of $Ir(pqz)_2(cdc)$ ($c = 2.0 \times 10^{-5}$ M) with 2 equiv of Hg²⁺ in the presence of 10µL various solvents in 2 mL DCM solution. Bars represent the final (I_(562nm)) emission intensity. The red bars represent the addition of various solvents (10µL) to a solution of $Ir(pqz)_2(cdc)$ with 2 equiv of Hg²⁺. The green bars represent the change of the emission intensity that occurs upon the subsequent addition of 10µL MeCN to the above solution.

Figure S12. Fluorescence output of $Ir(pqz)_2(cdc)$ (2.0×10⁻⁵ M) in the presence of chemical inputs (Hg²⁺ (1.5 equiv) and MeCN (1 µL) (When the fluorescence intensity at 562 nm was less than 10 marked 0, on the contrary, marked 1)

Table S1. Crystal data and structure refinement for Ir(pqz)₂(cdc).

Identification code	Ir(pqz) ₂ (cdc)
Empirical formula	C ₄₁ H ₂₆ Ir N ₅ S ₂
Formula weight	844.99
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P-1

Unit cell dimensions	a = 11.4807(13) Å $alpha = 64.3290(10)$ deg.	
	b = 12.9220(14) Å beta = 75.1090(10) deg.	
	c = 13.0863(15) Å gamma = 74.1730(10) deg.	
Volume	1661.7(3) Å ³	
Z, Calculated density	2, 1.689 Mg/m ³	
Absorption coefficient	4.182 mm ⁻¹	
F(000)	832	
Crystal size	0.65 x 0.57 x 0.13 mm	
Theta range for data collection	2.35 to 27.45 deg.	
Limiting indices	-14<=h<=13, -16<=k<=15, -15<=1<=16	
Reflections collected / unique	10302 / 7278 [R(int) = 0.0183]	
Completeness to theta $= 27.45$	96.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.6124 and 0.1719	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7278 / 0 / 442	
Goodness-of-fit on F ²	1.062	
Final R indices [I>2sigma(I)]	R1 = 0.0265, wR2 = 0.0672	
R indices (all data)	R1 = 0.0292, wR2 = 0.0687	
Largest diff. peak and hole	2.211 and -0.989 e. Å ⁻³	

Table S2. Bond lengths [Å] and angles [deg] for Ir(pqz)₂(cdc).

 8 []	
Ir(1)-C(21)	1.994(3)
Ir(1)-C(16)	2.010(3)
Ir(1)-N(4)	2.041(3)
Ir(1)-N(2)	2.049(3)
Ir(1)-S(2)	2.4474(8)
Ir(1)-S(1)	2.4823(8)
C(21)-Ir(1)-C(16)	86.78(12)
C(21)-Ir(1)-N(4)	78.77(11)
C(16)-Ir(1)-N(4)	93.68(11)
C(21)-Ir(1)-N(2)	94.64(11)
C(16)-Ir(1)-N(2)	78.93(11)
N(4)-Ir(1)-N(2)	170.45(9)
C(21)-Ir(1)-S(2)	98.59(8)
C(16)-Ir(1)-S(2)	174.42(8)
N(4)-Ir(1)-S(2)	88.86(8)
N(2)-Ir(1)-S(2)	99.03(7)
C(21)-Ir(1)-S(1)	169.21(8)
C(16)-Ir(1)-S(1)	103.97(9)
N(4)-Ir(1)-S(1)	99.33(8)
N(2)-Ir(1)-S(1)	88.41(8)
S(2)-Ir(1)-S(1)	70.68(3)

Number	Solvent	Emission intensity(<i>I</i> _{562 nm}) ^a
1	Blank	2.365
2	acetone	3.809
3	DMF	23.302
4	DMSO	24.72
5	n-hexane	2.631
6	diethyl ether	5.441
7	pyridine	25.239
8	petroleum ether	2.284
9	ethyl acetate	2.141
10	EtOH	18.291
11	MeCN	676.395
12	toluene	1.764
13	MeOH	9.824

Table S3 The emission intensity (I_{562 \text{ nm}}) in the presence of various solvents(10 $\mu L).$

^a Fluorescence responses of $Ir(pqz)_2(cdc)$ (2.0×10⁻⁵ M) in the presence of 2 equiv of Hg²⁺ in 2 mL DCM in the presence of various solvents(10 µL).

Figure S15. ¹H NMR of Ir(pqz)₂(cdc) with excessive of Hg²⁺ in CDCl₃

References:

- (a) Yamin Li, Y.M.; Zhang, X.L.; Zhu, B.C.; Yan, J.L.; Xu, W.P. Analytical Sciences 2010, 26, 1077; (b) Yang, X.F.; Wang, L.P.; Xu, H.M.; Zhao, M.L. Analytica Chimica Acta 2009, 631, 91; (c) Yang, Y.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. Analytica Chimica Acta 2009, 636, 83; (d) Ma, Q.J.; Zhang, X.B.; Zhao, X.H.; Jin, Z.; Mao, G.J.; Shen, G.L.; Yu, R.Q. Analytica Chimica Acta 2010, 663, 85.
- (a) Kubo, Y.; Kato, M.; Misawa, Y.; Tokita, S. Tetrahedron Lett. 2004, 45, 3769; (b) Yang, M.H.; Thirupathi, P.; Lee, K.H. Org. Lett. 2011, 13, 5028.