Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Synthesis of Poly(hydroxyurethane)s from Di(trimethylolpropane)

and Their Application to

Quaternary Ammonium Chloride-functionalized Films

Hiroyuki Matsukizono, Takeshi Endo Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820-8555, Japan Correspondence to: T. Endo (E-mail: tendo@moleng.fuk.kindai.ac.jp)

Figure S1 SEC traces of $p(DTMPC-C_6)$ prepared by the polyaddition of di(trimethylolpropane) (DTMPC) and 1,6-diaminohexane (C₆) in DMF at 70 °C with different C₆/DTMPC ratios. The C₆/DTMPC feed ratios are a) 1.0 or b) 1.1. The reaction time is depicted in the figure.

Figure S2 FT-IR spectra of PHUs ($p(DTMPC-C_n)$) synthesized from DTMPC and diamines with different methylene spaces.

Figure S3 SEC traces of PHUs ($p(DTMPC-C_n)$) synthesized from DTMPC and diamines with different methylene spaces in DMF at 70 °C for 23 h.

Figure S4 ¹H NMR spectra of $p(DTMPC-C_n)$ in CD₃OD. Top: $p(DTMPC-C_3)$. Bottom: $p(DTMPC-C_{12})$. The PHUs were synthesized from DTMPC and corresponding diamines with different methylene spaces in DMF at 70 °C for 23 h. The attribution of each signal is depicted in the figures.

Figure S5 FT-IR spectra of chloroacetylated PHUs ($p(DTMPC-C_n-CI)$) PHUs were synthesized from DTMPC and diamines with different methylene spaces and subsequently acetylated.

Figure S6 FT-IR spectra of chloroacetylated PHUs ($p(DTMPC-C_n-CI)$) PHUs were synthesized from DTMPC and diamines with different methylene spaces and subsequently acetylated.

Figure S7 ¹H NMR spectra of acetylated PHUs ($p(DTMPC-C_n-CI)$) in CDCl₃. Top: $p(DTMPC-C_3-CI)$. Bottom: $p(DTMPC-C_{12}-CI)$. The PHUs were synthesized from DTMPC and corresponding diamines with different methylene spaces and acetylated. The attribution of each signal is depicted in the figures.

Figure S8 FT-IR spectra of QAC-functionalized PHUs (p(DTMPC-C_n-DMOA-Cl)). PHUs were synthesized from DTMPC and diamines with different methylene spaces and subsequently acetylated followed by quaternized with DMOA.

Figure S9 ¹H NMR spectra of QAC-functionalized PHUs ($p(DTMPC-C_n-DMOA-CI)$) in CD₃OD. Top: $p(DTMPC-C_3-DMOA-CI)$. Bottom: $p(DTMPC-C_{12}-DMOA-CI)$. The PHUs were synthesized from DTMPC and corresponding diamines with different methylene spaces and acetylated. The attribution of each signal is depicted in the figures. For $p(DTMPC-C_{12}-DMOA-CI)$, the attribution of the both chain ends is omitted for clarity.

Figure S10 Absorption spectra of QAC-functionalized PHU films (QAC-Films) prepared by the reaction of $p(DTMPC-C_6-CI)$ with different amounts of TMDAH. TMDAH were 10 (red line), 20 (blue line), 30 (green line), 40 (orange line) or 50 mol% (purple line) with respect to chloroacetyl groups of PHU unit. At vertical axis, absorbance was converted to transmittance.

Figure S11 Photographs of QAC-functionalized PHU films (QAC-Films) prepared by the reaction of $p(DTMPC-C_6-CI)$ with different amounts of TMDAH. TMDAH were a) 40 or b) 50 mol% with respect to chloroacetyl groups of PHU unit.

Figure S12 TGA profiles of QAC-Film (blue broken line) or QAC2-Film (red solid line). The QAC-Film was prepared from $p(DTMPC-C_6-CI)$ with 20 mol% of TMDAH and subsequently modified with DMOA to yield QAC2-Film.

Figure S13 FT-IR spectra of QAC-Film (top) or QAC2-Film (bottom). The QAC-Film was prepared from $p(DTMPC-C_6-CI)$ with 20 mol% of TMDAH and subsequently modified with DMOA to yield QAC2-Film.