Supplementary Information

An optimized mild reduction route towards excellent cobaltgraphene catalysts for water oxidation

D. Phihusut,^{*a*†} J. D. Ocon,^{*ac*†} Jae Kwang Lee^{*ab*} and J. Lee^{*ab*}

^a Electrochemical Reaction and Technology Laboratory (ERTL), School of Environmental Science and Technology, ^b Ertl Center for Electrochemistry and Catalysis, RISE, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
^c Laboratory of Electrochemical Engineering (LEE), Department of Chemical Engineering, College of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines.

[†] These authors contributed equally to this work.

Fig. S1. UV-Vis absorption spectra of gRGOs reduced at 90 °C with different reduction times.

Fig. S2. FT-IR spectra of gRGOs reduced with different reduction times at (a) 25 °C and (b) 90 °C and (c) pristine graphene oxide (GO).

Fig. S3. Residual mass loss curves of the $CoC_2O_4/gRGO$ electrocatalyst reduced at 25°C for 6 hr and its individual components.

Fig. S4. Steady-state Tafel slope measurements of $CoC_2O_4/gRGO-25^{\circ}C-6h$ (red), 20 wt.% Ir/C (blue), $CoC_2O_4/gRGO-90^{\circ}C-6h$ (green), and CoC_2O_4 (black).

Fig. S5. SEM images of (a) $CoC_2O_4/gRGO$ reduced at 90°C for 6 hr and (b) CoC_2O_4 structures formed at 25 °C for 6 hr.