Supporting Information

Novel Organic-Inorganic Hybrids Based on T₈ and T₁₀ Silsesquioxanes: Synthesis, Cage-Rearrangement and Properties

Mateusz Janeta, Łukasz John,* Jolanta Ejfler and Sławomir Szafert

Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland

*To whom correspondence should be addressed: E-mail: lukasz.john@chem.uni.wroc.pl

Scheme S1. Synthesis of 1–5.	4
Figure S1. Powder XRD patterns for 1–5.	5
Figure S2. Powder XRD patterns for 1–5 after heating to the decomposition temperature	. 5
Figure S3. ¹ H NMR (500 MHz, DMSO-d ₆ , 300 K) spectrum of 1 .	6
Figure S4. ¹³ C NMR (126 MHz, DMSO-d ₆ , 300 K) spectrum of 1.	6
Figure S5. ²⁹ Si NMR (59.6 MHz, DMSO-d ₆ , 300 K) spectrum of 1.	7
Figure S6. FT-IR (KBr pellets) spectrum of 1.	7
Figure S7. HR-MS (ESI+, TOF, MeOH) spectrum of 1.	8
Figure S8. EDS spectrum of 1.	8
Figure S9. Powder XRD pattern of 1.	9
Figure S10. ¹ H NMR (500 MHz, DMSO-d ₆ , 300 K) spectrum of 2 .	10
Figure S11. ¹³ C NMR (126 MHz, DMSO-d ₆ , 300 K) spectrum of 2 .	10
Figure S12. ²⁹ Si NMR (59.6 MHz, DMSO-d ₆ , 300 K) spectrum of 2 .	11
Figure S13. FT-IR (KBr pellets) spectrum of 2.	11
Figure S14. HR-MS (ESI+, TOF, MeOH) spectrum of 2.	12
Figure S15. EDS spectrum of 2.	12
Figure S16. Powder XRD pattern of 2.	13
Figure S17. ¹ H NMR (500 MHz, DMSO-d ₆ , 300 K) spectrum of 3 .	14
Figure S18. ¹³ C NMR (126 MHz, DMSO-d ₆ , 300 K) spectrum of 3 .	14
Figure S19. ²⁹ Si NMR (59.6 MHz, DMSO-d ₆ , 300 K) spectrum of 3 (method A).	15
Figure S20. ²⁹ Si NMR (59.6 MHz, DMSO-d ₆ , 300 K) spectrum of 3 (method B).	15
Figure S21. ²⁹ Si NMR (59.6 MHz, DMSO-d ₆ , 300 K) spectrum of 3 (method C).	16
Figure S22. ²⁹ Si NMR (59.6 MHz, DMSO-d ₆ , 300 K) spectrum of 3 (method D).	16
Figure S23. FT-IR (KBr pellets) spectrum of 3.	17
Figure S24. HR-MS (ESI+, TOF, MeOH) spectrum of 3 (method A).	17
Figure S25. HR-MS (ESI+, TOF, MeOH) spectrum of 3 (method B).	18
Figure S26. HR-MS (ESI+, TOF, MeOH) spectrum of 3 (method C).	18
Figure S27. HR-MS (ESI+, TOF, MeOH) spectrum of 3 (method D).	19
Figure S28. EDS spectrum of 3.	19
Figure S29. Powder XRD pattern of 3.	20
Figure S30. ¹ H DOSY (600 MHz, DMSO-d ₆ , 300 K) spectrum of 2 (top) and 3 (bottom)	. 20
Figure S31. ¹ H NMR (500 MHz, DMSO-d ₆ , 300 K) spectrum of 4 .	21
Figure S32. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 4.	21
Figure S32. ¹ H– ¹ H COSY NMR (500 MHz, DMSO-d ₆ , 300 K) spectrum of 4.	22
Figure S34. ¹ H DOSY (600 MHz, CDCl ₃ , 300 K) spectrum of 4.	22
Figure S35. ²⁹ Si NMR (59.6 MHz, DMSO-d ₆ , 300 K) spectrum of 4.	23
Figure S36. FT-IR (KBr pellets) spectrum of 4.	23
Figure S37. HR-MS (ESI+, TOF, CHCl ₃) spectrum of 4.	24

Figure S38. EDS spectrum of 4.	24				
Figure S39. Powder XRD pattern of 4.					
Figure S40. ¹ H NMR (500 MHz, DMSO-d ₆ , 300 K) spectrum of 5 .					
Figure S41. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 5 .					
Figure S42. ¹ H DOSY (600 MHz, CDCl ₃ , 300 K) spectrum of 5 .					
Figure S43. ²⁹ Si NMR (59.6 MHz, DMSO-d ₆ , 300 K) spectrum of 5.					
Figure S44. FT-IR (KBr pellets) spectrum of 5.					
Figure S45. HR-MS (ESI+, TOF, CHCl ₃) spectrum of 5 (method A).					
Figure S46. HR-MS (ESI+, TOF, CHCl ₃) spectra of 4 and 5 before and after separation.	29				
Figure S47. EDS spectrum of 5.	30				
Figure S48. Powder XRD pattern of 5.	30				
Figure S49. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 6.	31				
Figure S50. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 6.	31				
Figure S51. TG (black line), and DTA (blue line) thermogram of 1.	32				
Figure S52. TG (black line), and DTA (blue line) thermogram of 2.	32				
Figure S53. TG (black line), and DTA (blue line) thermogram of 3.					
Figure S54. TG (black line), and DTA (blue line) thermogram of 4 (air and nitrogen).					
Figure S55. TG (black line), and DTA (blue line) thermogram of 5 (air and nitrogen).	34				
Figure S56. TG (black line), and DTA (blue line) thermogram of 6 (air and nitrogen).	34				
Figure S57. First derivative of TG (DTG) thermograms of 1–6.	35				
Figure S58. DSC of 5, 2 nd heat and cooling cycle (in nitrogen).	35				
Figure S59. DSC of 6, 2 nd heat and cooling cycle (in nitrogen).	35				
Figure S60. Selected HR-TEM images of 4 (a) and 5 (b).	36				
Figure S61. ²⁹ Si NMR (59.6 MHz, DMSO-d ₆ , 300 K) spectrum of 1 after reaction with	0, 1,				
4, 8, 12 and 16 equivalents of CH_3SO_3H .	37				
Figure S62. HR-MS (ESI+, TOF, MeOH) spectra of C.	38				
Figure S63. HR-MS (ESI+, TOF, MeOH) spectra of D.	38				
Figure S64. HR-MS (ESI+, TOF, MeOH) spectra of E.	39				
Figure S65. Molecular models of compound 4 (a), compound 5 (b).	39				
Table S1. MM2 calculations of the minimization energies of Compound 2, 3, 4, 5.	39				
Figure S66. ²⁹ Si NMR (59.63 MHz, DMSO-d ₆ , 300 K) spectrum of DSS and TMS.	40				

a) H₂O, HCl; b) H₂O, CF₃SO₃H c) acetone, precipitate d) acetone solution e) CF₃SO₃H, DMSO f) decanoyl chloride, DMF, Et₃N

Scheme S1. Synthesis of 1–5.

Figure S1. Powder XRD patterns for 1–5.

Figure S2. Powder XRD patterns for 1–5 after heating to the decomposition temperature.

Figure S3. ¹H NMR (500 MHz, DMSO- d_6 , 300 K) spectrum of 1, s = solvent.

Figure S4. ¹³C NMR (126 MHz, DMSO-d₆, 300 K) spectrum of 1.

Figure S7. Simulated (A) calcd for $C_{24}H_{65}N_8O_{12}Si_8$, [M -8HCl + H]⁺ and measured (B) HR-MS (ESI+, TOF, MeOH) spectra of 1.

Figure S8. EDS spectrum of **1** (copper content is derived from the high-purity conducting Cu grid).

Figure S9. Powder XRD pattern of 1.

Figure S10. ¹H NMR (500 MHz, DMSO-d₆, 300 K) spectrum of **2**, s = solvent. Chemical shifts were referenced to tetramethylsilane (TMS) (δ 0.0).

Figure S12. ²⁹Si NMR (59.6 MHz, DMSO-d₆, 300 K) spectrum of **2**. Chemical shifts were referenced to 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) (δ 1.316).

Figure S14. Simulated (A) calcd for $C_{24}H_{65}N_8O_{12}Si_8$, [M -8CF₃SO₃H + H]⁺ and measured (B) HR-MS (ESI+, TOF, MeOH) spectra of **2**.

Figure S15. EDS spectrum of 2 (copper content is derived from the high-purity conducting Cu grid).

Figure S16. Powder XRD pattern of 2.

Figure S17. ¹H NMR (500 MHz, DMSO- d_6 , 300 K) spectrum of 3, s = solvent.

Figure S20. ²⁹Si NMR (59.6 MHz, DMSO-d₆, 300 K) spectrum of **3** obtained in method B. Chemical shifts were referenced to 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) (δ 1.316).

Figure S21. ²⁹Si NMR (59.6 MHz, DMSO-d₆, 300 K) spectrum of **3** obtained in method C (by cage-rearrangement $1 \rightarrow 3$). Chemical shifts were referenced to tetramethylsilane (TMS) (δ 0.00).

Figure S22. ²⁹Si NMR (59.6 MHz, DMSO-d₆, 300 K) spectrum of **3** obtained in method D (by cage-rearrangement $2 \rightarrow 3$). Chemical shifts were referenced to tetramethylsilane (TMS) (δ 0.00).

Figure S24. Simulated (A) calcd for $C_{30}H_{82}N_{10}O_{15}Si_{10}$, [M -10CF₃SO₃H + 2H]²⁺ and measured (B) HR-MS (ESI+, TOF, MeOH) spectra of **3** obtained in method A.

Figure S25. Simulated (A) calcd for $C_{30}H_{83}N_{10}O_{15}Si_{10}$, [M -10CF₃SO₃H + 3H]³⁺ and measured (B) HR-MS (ESI+, TOF, MeOH) spectra of **3** obtained in method B.

Figure S26. HR-MS (ESI+, TOF, MeOH) spectra of **3** obtained in method C (by cage-rearrangement $1 \rightarrow 3$). Simulated (A) calcd for $C_{30}H_{81}N_{10}O_{15}Si_{10}$, [M -10CF₃SO₃H + 1H]⁺ and measured (B).

Figure S27. HR-MS (ESI+, TOF, MeOH) spectra of 3 obtained in method D (by cage-rearrangement $2 \rightarrow 3$).

Figure S28. EDS spectrum of 3 (copper content is derived from the high-purity conducting Cu grid).

Figure S29. Powder XRD pattern of 3.

Figure S30. ¹H DOSY (600 MHz, DMSO-d₆, 300 K) spectrum of 2 (top) and 3 (bottom).

Figure S36. FT-IR (KBr pellets) spectrum of 4.

Figure S37. Simulated (A) calcd for $C_{104}H_{210}N_8O_{20}Si_8$, $[M + 2H]^{2+}$ and measured (B) HR-MS (ESI+, TOF, CHCl₃) spectra of 4.

Figure S38. EDS spectrum of 4 (copper content is derived from the high-purity conducting Cu grid).

Figure S39. Powder XRD pattern of 4.

Figure S43. ²⁹Si NMR (59.6 MHz, DMSO-d₆, 300 K) spectrum of **5**. Chemical shifts were referenced to 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) (δ 1.316).

Figure S44. FT-IR (KBr pellets) spectrum of 5.

Figure S45. Simulated (A) calcd for $C_{130}H_{262}N_{10}O_{25}Si_{10}$, $[M + 2H]^{2+}$ and measured (B) HR-MS (ESI+, TOF, CHCl₃) spectra of 5 (method A).

Figure S46. HR-MS (ESI+, TOF, CHCl₃) spectra of 4 and 5.

Figure S47. EDS spectrum of 5 (copper content is derived from the high-purity conducting Cu grid).

Figure S48. Powder XRD pattern of 5.

Figure S51. TG (black line), and DTA (blue line) thermogram of 1 10 °C/min (in the air atmosphere: 60% N₂, 40% O₂).

Figure S52. TG (black line), and DTA (blue line) thermogram of 2 10 °C/min (in the air atmosphere: 60% N₂, 40% O₂).

Figure S53. TG (black line), and DTA (blue line) thermogram of **3** 10 °C/min (in the air atmosphere: 60% N₂, 40% O₂).

Figure S54. TG (black line), and DTA (blue line) thermogram of **4** 10 °C/min. Left graph in the air atmosphere (60% N₂, 40% O₂), right in nitrogen.

Figure S55. TG (black line), and DTA (blue line) thermogram of 5 10 °C/min. Left graph in the air atmosphere (60% N₂, 40% O₂), right in nitrogen.

Figure S56. TG (black line), and DTA (blue line) thermogram of **6** 10 °C/min. Left graph in the air atmosphere (60% N₂, 40% O₂), right in nitrogen.

Figure S57. First derivative of TG (DTG) thermograms of **1–6** 10 °C/min (in the air atmosphere: 60% N₂, 40% O₂).

Figure S58. DSC of 5, 2nd heat & cooling cycle (5 °C/min in the nitrogen atmosphere).

Figure S59. DSC of 6, 2nd heat & cooling cycle (5 °C/min in the nitrogen atmosphere).

Figure S60. Selected HR-TEM images of 4 (a) and 5 (b).

Figure S61. ²⁹Si NMR (59.6 MHz, DMSO-d₆, 300 K) spectrum of **1** after reaction with 0, 1, 4, 8, 12 and 16 equivalents of CH₃SO₃H. Chemical shifts were referenced to tetramethylsilane (TMS).

Figure S62. Simulated (up) calcd for $C_{18}H_{52}N_6O_{11}Si_6Na$, $[M + Na]^+$ and measured (down) HR-MS (ESI+, TOF, MeOH) spectra of **C**.

Figure S63. Simulated (up) calcd for $C_{10}H_{16}F_{12}N_2O_{13}S_4Si_2Na$, $[M + Na]^+$ and measured (down) HR-MS (ESI+, TOF, MeOH) spectra of **D**.

Figure S64. Simulated (up) calcd for $C_{24}H_{68}N_8O_{14}Si_8$, $[M + H]^+$ and measured (down) HR-MS (ESI+, TOF, MeOH) spectra of E.

Figure S65. Molecular models of compound 4 (a), compound 5 (b).

Table S1. MM2 calculations of the minimization energies of Compound 2, 3, 4, 5.

	Amine		Amide	
Energy parameters*	Compound 2	Compound 3	Compound 4	Compound 5
Stretch:	1.7969	7.6789	7.0276	11.1709
Bend:	7.0679	58.1066	27.8027	155.4612
Stretch-Bend:	-0.6755	-4.5902	0.9053	0.4549
Torsion:	0.9477	3.1937	29.6476	39.5012
Non-1,4 VDW:	-35.4194	-53.9810	-52.8458	-123.3177
1,4 VDW:	2.4715	15.4807	44.0530	66.8356
Dipole/Dipole:	35.5346	35.0298	-25.4860	-47.7560
Total Energy:	11.7237	60.9185	31.1044	102.3501

*units of energy are kcal/mol

Figure S66. ²⁹Si NMR (59.63 MHz, DMSO-d₆, 300 K) spectrum of DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid). Chemical shifts were referenced to TMS (Tetramethylsilane) (δ 0.000).