Supporting Information

Ammonia Borane in External Electric Field: Structure, Charge transfer,

and Chemical Bonding

Xue Zhang, Shi-Ling Sun, Hong-Liang Xu* and Zhong-Min Su*

Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun

130024, Jilin, People's Republic of China

E-mail: hlxu@nenu.edu.cn, zmsu@nenu.edu.cn

General Comments

Table S1. The optimized structural parameters and dipole moment (μ) of BH₃NH₃ in different external electric fields.

Table S2. NBO charge q_1 of BH₃NH₃ in external electric fields and NBO charge q_2 of BH₃NH₃ after external electric fields. The Laplacian of the electron density ($\nabla^2 \rho_{(r)}$) and electron density (ρ) of the bond critical points (BCPs).

Table S3. The fragment contribution to HOMO-2 of BH₃NH₃ molecule in a series of $E_{\text{ext}} \times 10^{-4}$ au. **Table S4.** The optimized structural parameters of (BH₃NH₃)₂ dimers in different external electric fields. **Table S5.** Potential energy E of eclipsed forms of BH₃NH₃ in different external electric fields.

	fields ^a .								
$E_{ext} \times 10^{-4}$ au	r (B-N)	r(B-H)	r(N-H)	H-B-H	H-N-H	H_1 -B- H_2 - H_3	H ₁ '-N-H ₂ '-H ₃ '	μ_{I}	μ_2
-767	1.653	1.263	1.045	106.7	101.0	113.9	103.7	13.33	6.30
-750	1.634	1.263	1.044	106.2	100.8	112.7	103.4	13.01	6.36
-700	1.617	1.258	1.040	106.1	101.1	112.7	103.7	12.26	6.35
-650	1.611	1.253	1.037	106.5	101.5	113.5	104.4	11.63	6.31
-600	1.608	1.247	1.034	107.1	102.0	114.6	105.2	11.04	6.25
-550	1.606	1.242	1.032	107.7	102.5	115.9	106.0	10.49	6.18
-519	1.606	1.239	1.031	108.1	102.8	116.8	106.5	10.15	6.14
-500	1.606	1.237	1.030	108.3	102.9	117.3	106.8	9.96	6.12
-450	1.607	1.233	1.028	108.9	103.4	118.7	107.6	9.46	6.05
-400	1.609	1.229	1.026	109.5	103.9	120.1	108.5	8.98	5.99
-350	1.611	1.226	1.024	110.1	104.4	121.5	109.3	8.52	5.92
-300	1.614	1.222	1.023	110.6	104.9	122.9	110.2	8.06	5.86
-250	1.617	1.219	1.022	111.1	105.4	124.3	111.1	7.61	5.79
-200	1.621	1.217	1.021	111.6	105.8	125.7	112.1	7.18	5.73
-150	1.626	1.214	1.020	112.1	106.3	127.2	113.0	6.74	5.66
-100	1.633	1.212	1.019	112.6	106.8	128.7	114.1	6.31	5.59
-50	1.641	1.210	1.018	113.1	107.4	130.3	115.3	5.87	5.51
0	1.649	1.208	1.017	113.6	107.9	131.9	116.3	5.44	5.44
50	1.660	1.207	1.016	114.1	108.5	133.6	117.8	5.44	5.35
100	1.674	1.205	1.015	114.6	109.1	135.6	119.2	4.99	5.25
150	1.692	1.204	1.015	115.2	109.8	137.7	120.9	4.52	5.14
200	1.716	1.202	1.014	115.8	110.6	140.4	122.9	4.04	4.99
250	1.751	1.201	1.013	116.5	111.6	143.8	125.5	3.51	4.80
300	1.820	1.199	1.011	117.5	113.2	149.2	130.7	2.90	4.42
320	1.902	1.197	1.009	118.3	114.9	154.7	136.8	1.80	3.97
321	3.207	1.192	1.021	119.7	102.3	168.3	105.7	4.20	2.01

Table S1. The optimized structural parameters and Dipole moment (μ) of BH₃NH₃ in different external electric

^aThe bond distance are in angstroms; angles, in degrees; dipole moment, in Debye.

$E_{ext} \times 10^{-4}$ au	$q_1(\mathrm{NH}_3)$	$q_1(BH_3)$	$q_2(NH_3)$	$q_2(BH_3)$	$\nabla^2 \rho(\text{B-N})$	$\nabla^2 \rho(\text{B-H})$	$\nabla^2 \rho(\text{N-H})$	$\rho(\text{B-N})$	$\rho(\text{B-H})$	$\rho(\text{N-H})$
-767	0.706	-0.706	0.318	-0.318	0.124	-0.053	-1.809	0.134	0.140	0.310
-750	0.618	-0.618	0.322	-0.322	0.152	-0.050	-1.811	0.138	0.140	0.312
-700	0.529	-0.529	0.325	-0.325	0.198	-0.050	-1.818	0.141	0.142	0.316
-650	0.490	-0.490	0.327	-0.327	0.235	-0.053	-1.823	0.141	0.145	0.319
-600	0.472	-0.472	0.330	-0.330	0.267	-0.056	-1.826	0.139	0.147	0.323
-550	0.457	-0.457	0.330	-0.330	0.297	-0.060	-1.828	0.137	0.150	0.325
-519	0.449	-0.449	0.329	-0.329	0.314	-0.063	-1.828	0.136	0.151	0.327
-500	0.444	-0.444	0.329	-0.329	0.324	-0.065	-1.828	0.135	0.152	0.328
-450	0.430	-0.430	0.328	-0.328	0.350	-0.070	-1.826	0.133	0.154	0.330
-400	0.419	-0.419	0.327	-0.327	0.374	-0.075	-1.824	0.130	0.156	0.332
-350	0.406	-0.406	0.326	-0.326	0.128	-0.081	-1.820	0.396	0.158	0.334
-300	0.393	-0.393	0.325	-0.325	0.308	-0.087	-1.816	0.125	0.160	0.336
-250	0.380	-0.380	0.324	-0.324	0.435	-0.093	-1.811	0.122	0.161	0.337
-200	0.370	-0.370	0.323	-0.323	0.452	-0.099	-1.805	0.119	0.163	0.339
-150	0.356	-0.356	0.322	-0.322	0.466	-0.106	-1.798	0.115	0.165	0.340
-100	0.344	-0.344	0.321	-0.321	0.479	-0.113	-1.791	0.112	0.166	0.341
-50	0.331	-0.331	0.319	-0.319	0.487	-0.121	-1.785	0.108	0.168	0.342
0	0.316	-0.316	0.316	-0.316	0.494	-0.128	-1.775	0.103	0.169	0.342
50	0.300	-0.300	0.313	-0.313	0.494	-0.137	-1.770	0.099	0.170	0.343
100	0.284	-0.284	0.309	-0.309	0.495	-0.146	-1.763	0.094	0.172	0.343
150	0.267	-0.267	0.303	-0.303	0.487	-0.155	-1.757	0.088	0.173	0.344
200	0.248	-0.248	0.295	-0.295	0.469	-0.167	-1.751	0.081	0.174	0.344
250	0.225	-0.225	0.284	-0.284	0.436	-0.180	-1.748	0.073	0.176	0.344
300	0.191	-0.191	0.262	-0.262		-0.200	-1.757		0.178	0.344
320	0.161	-0.161	0.237	-0.237		-0.217	-1.775		0.180	0.344
321	0.005	-0.005	0.018	-0.018		-0.288	-1.621		0.186	0.335

Table S2. NBO charge q_1 of BH₃NH₃ in external electric fields and NBO charge q_2 of BH₃NH₃ after external electric fields. The Laplacian of the electron density ($\nabla^2 \rho_{(r)}$) and electron density (ρ) of the bond critical points (BCPs).

Table S3. The fragment contribution to HOMO-2 of BH₃NH₃ molecule in a series of $E_{\text{ext}} \times 10^{-4}$ au.

$E_{ext} \times 10^{-4}$ at	u -76	7 -750	-700	-650	-600	-550	-519	-500	-450	-400	-350	-300	-250
BH ₃ % [HOM	0-2] 41.2	42.2	8 44.05	45.69	47.34	49.07	50.18	50.88	52.72	54.58	56.42	58.2	59.91
NH ₃ % [HOM	O-2] 58.	73 57.7	2 55.95	54.31	52.65	50.92	49.82	49.13	47.28	45.42	43.58	41.8	40.09
$E_{ext} \times 10^{-4}$ at	u -20	0 -150	-100	-50	0	50	100	150	200	250	300	320	321
BH ₃ % [HOM	0-2] 61	.5 62.9	7 64.3	65.33	66.37	67.09	67.52	67.61	67.11	65.66	60.97	53.57	3.03
NH ₃ % [HOM	O-2] 38	.5 37.0	3 35.7	34.66	33.63	32.91	32.48	32.39	32.89	34.34	39.03	46.43	96.97

$E_{ext} \times 10^{-4}$ au	r(B-N)	H_1 -B- H_2 - H_3	H ₁ '-N-H ₂ '-H ₃ '
-200	1.606	112.4	123.1
-150	1.610	124.2	124.3
-100	1.614	114.2	114.2
-50	1.620	115.1	115.1
0	1.626	128.1	116.1
50	1.634	129.5	117.2
100	1.643	130.9	118.4
150	1.654	132.5	119.5
200	1.668	134.2	121.0

Table S4. The optimized structural parameters of BH₃NH₃ dimers in different external electric fields^a.

^aThe bond distance are in angstroms; angles, in degrees.

Optimized Cartesian Coordinates

BH₃NH₃ without external electric field

В	0.00000000	0.00000000	-0.10573900
Ν	0.00000000	0.00000000	1.54374200
Н	1.16752400	0.00000000	-0.41674100
Н	-0.58376200	-1.01110600	-0.41674100
Н	-0.58376200	1.01110600	-0.41674100
Н	-0.94926200	0.00000000	1.90888300
Н	0.47463100	0.82208500	1.90888300
Н	0.47463100	-0.82208500	1.90888300

$E_{ext} \times 10^{-4}$ au	-200	-150	-100	-50	0
E (au)	-82.6896	-82.6754	-82.6619	-82.6490	-82.6368
$E_{ext} \times 10^{-4}$ au	50	100	150	200	
E (au)	-82.6253	-82.6145	-82.6043	-82.5949	

Table S5. Potential energy E of eclipsed forms of BH₃NH₃ in different external electric fields.