Supplementary Information for

"Novel Approach for Spectrophotometric Determination of Succinylcholine in Pharmaceutical Formulation via Host-Guest Complextaion with Water-Soluble p-Sulfonatocalixarene"

Mohamed K. Abd El-Rahman ${ }^{\text {a }}$ and Amr M. Mahmoud ${ }^{\text {a }}$
${ }^{\text {a }}$ Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, Egypt 11562.

Figure S-1. ${ }^{1} \mathrm{H}$ NMR spectra of SCX 4 with appropriate protons labeled letters.

Section.1. Job's Plot by UV-spectroscopy

Figure S-2. UV spectra in deionized water of a series of solutions of different molar ratio of SCX4 and SUC between 0 and $1,[\mathrm{SUC}]+[S C X 4]=1.0 \times 10^{-3} \mathrm{M}$. The black curve is the UVspectrum of the divisor $2 \times 10^{-4} \mathrm{M} \mathrm{SCX} 4$.
(a).(0.1 mM SCX4: 0.9 mM SUC$),$ (b).(0.2mM SCX4: 0.8 mM SUC), (c).(0.3mM SCX4:
0.7 mM SUC), (d). (0.4mM SCX4: 0.6mM SUC), (e). (0.5mM SCX4: 0.5 mM SUC), (f). (0.6mM SCX4: 0.4 mM SUC), (g). ($0.7 \mathrm{mM} \mathrm{SCX4:} 0.3 \mathrm{mM} \mathrm{SUC})$, (h). (0.8 mM SCX4: $0.2 \mathrm{mM} \mathrm{SUC)}$.

Figure S-3. First derivative of ratio spectra of the complex using $2 \times 10^{-4} \mathrm{M} \mathrm{SCX} 4$ as a divisor, (a).(0.1 mM SCX4: 0.9 mM SUC$)$, (b).(0.8mM SCX4: $0.2 \mathrm{mM} \mathrm{SUC)}, \mathrm{(c).(0.2mM} \mathrm{SCX4:} 0.8 \mathrm{mM}$ SUC), (d). (0.7mM SCX4: 0.3mM SUC), (e). (0.3mM SCX4: 0.7mM SUC), (f). (0.4mM SCX4: $0.6 \mathrm{mM} \mathrm{SUC})$, (g). (0.6mM SCX4: 0.4 mM SUC$)$, (h). ($0.5 \mathrm{mM} \mathrm{SCX4:} 0.5 \mathrm{mM}$ SUC).

Figure S-4. Job's plot for the determination of the stoichiometry of SCX4 and SUC in the complex, $[\mathrm{SUC}]+[\mathrm{SCX} 4]=1.0 \times 10^{-3} \mathrm{M}$.

Figure S-5. Normalized Job's plot for the determination of the stoichiometry of SCX4 and SUC in the complex, $[\mathrm{SUC}]+[\mathrm{SCX} 4]=1.0 \times 10^{-3} \mathrm{M}$.

Table S-1. The experimentally determined values of $\mathrm{S} / \mathrm{S}_{\mathrm{MAX}}$ and the value of $\Sigma \mathrm{S} / \mathrm{S}_{\mathrm{MAX}}[1]$.

Mole fraction of host (SCX4)	Peak amplitude (S)	$\mathrm{S} / \mathrm{S}_{\text {max }}$
0.1	3.30	0.34
0.2	5.69	0.58
0.3	7.99	0.81
0.4	8.92	0.91
0.5	9.80*	1
0.6	9.44	0.963
0.7	6.79	0.69
0.8	4.35	0.44
0.9	2.63	0.27
$\sum \mathbf{S} / \mathbf{S}_{\text {max }}$		6.01

Section 2. Theoretical relation between the concentrations of SUC and the inclusion complex formed

Figure S-6. Ratio spectra of SUC $\left(1 \times 10^{-5}-18 \times 10^{-5} \mathrm{M}\right)$ using the spectrum of $2 \times 10^{-4} \mathrm{M}$ of SCX4 as a divisor

Figure S-7. Plot of peak amplitude of (SCX4-SUC) host-guest complex at 315 nm vs. the concentration of SUC in ranges lower and higher than the host.

References:
[1] E.J. Olson, P. Buhlmann, J Org Chem, 76 (2011) 8406.

