Supporting Information

Novel phenylacetylene-indolium fluorophore for naked eye detection of cyanide

Nakorn Niamnont^{a,*}, Apiwat Promchat^b, Chutima Siangma^a,

Chuenjai Pramaulpornsatit^a, Mongkol Sukwattanasinitt^b

^a Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.

^bOrganic Synthesis Unit, Department of Chemistry, Faculty of Science and Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand.

<u>nakorn.nia@kmutt.ac.th</u>

Contents

	Page
1. Synthetic procedures of 2	S2
2. The photophysical properties of 2	S 3
3. Emission spectra ratios (I/I_0) of 2 (50 μ M) in the presence of α -, β -,	
and γ cyclodextrins (400 $\mu M)$ and cyanide ion (100 $\mu M)~$ and image	S4
4. Reaction-time profile of probe 2 for CN ⁻ detection	S5
5. Calibration curve of 2 for cyanide ions detection	S5
6. The cross checked cyanide addition to probe 2 by using EI-HRMS	S6

Figure S1. ¹H-NMR spectrum of 2 in Acetone-d6 (500 MHz).

Figure S2. ¹³C-NMR spectrum of 2 in in Acetone-d6 (500 MHz).

Figure S3. HRMS spectrum of 2.

Commonweal	Absor	ption	Emission			
Compound	λ _{max} (nm)	log ε (M ⁻¹ cm ⁻¹)	λ _{em} (nm)	$\Phi_{F}{}^{a}$		
2	450	4.29	595	0.025		
2 + CN ⁻	360	2.58	450	0.34		

Quinine sulfate in 0.1 M H_2SO_4 ($\Phi_F = 0.54$) was used as standard

Table S1. Photophysical properties of 2 mixed cyclodextrins (400 µM) in HEPES (10 mM, pH 7.4)

Figure S4. Image of 2 only (100 μ M) (left) and 2 mixed α -cyclodextrins (800 μ M) in HEPES buffer pH 7.4.

Figure S5. Emission spectra ratios (I/I₀) of **2** (10 μ M) in the presence of α -, β -, and γ cyclodextrins (400 μ M) and cyanide ion (100 μ M) in HEPES buffer pH 7.4, excited at 360 nm.

Figure S6. Reaction-time profile of probe **2** (50 μ M) mixed cyclodextrins (400 μ M) in HEPES buffer pH 7.4 in the presence of different concentrations of CN⁻.

Figure S7. The corresponding calibration curve of **2** (50 μ M) mixed cyclodextrins (400 μ M) in the presence of cyanide ions at various concentrations.

				Ma	ss S	pect	rum L	ist R	epor	t			
Analysis Inf Analysis Nar Method Sample Nam	o me OSN Tune ne N2 N2	OSNN580708002.d Tune_low_POS_Natee20130403.m N2 N2						Acqu Oper Instru	isition Date ator iment	7/8/2 Adm micr	2015 3:02: inistrator OTOF	:07 PM 72	
Acquisition Source Type Scan Range Scan Begin Scan End	Paramete ESI n/a 50 m 3000	r /z m/z		IO Ci His Hi	n Polarity apillary Ex exapole R kimmer 1 exapole 1	kit F	Positive 180.0 V 150.0 V 45.0 V 24.3 V			Set Correcto Set Pulsar Pulsat Reflector Set Reflector Set Flight Tul Set Detector	r Fill ull ush be TOF	79 V 406 V 388 V 1300 V 9000 V 1910 V	
Inter	ns.										+1	MS. 1.2-1.3	min #(74-7
30	00-						432.2400	H N-{	_>_=		$\hat{\mathbb{D}}$		
20	00-]	2-CN+H]⁺			
10	-00								Exact Ma	Formula: C_{30} Hass: clad. 432.2	₃₀ N ₃ 440		
	410.2	124			429	.2414		43	37.1984				
	0 419.3	120	424	425	27.2719	120	~,I_,I	,L					·,~ ,^ ,
		120		420		430		435		440		445	m/
#	m/z	1	1%	S/N	FWHM	Res.							
2	410.3732	125	1.1	4.0	0.0539	7755 5616	5						
3	420.6841	40	1.3	5.1	0.0131	32077							
4	421.2404	115	3.6	14.6	0.1354	3110)						
6	424.2388	57	1.8	7.2	0.0527	8049)						
7	426.2377	19	0.6	2.4	0.0651	6545							
8	426.3377	20	0.6	2.5	0.1069	3987							
9	427.2719	131	4.1	16.7	0.1068	4000							
11	429.2414	584	18.3	5.0	0.1185	3614							
12	430.2406	132	4.1	16.7	0.0675	6374							
13	431.2400	73	2.3	9.3	0.1116	3865							
14	432.2400	3198	100.0	406.4	0.0650	6650							
16	434,2461	141	24.4	99.3	0.0739	5866							
17	435.3062	69	2.2	8.8	0.1516	2872							
18	436.3295	29	0.9	3.7	0.1310	3331							
19	437.1984	574	17.9	73.1	0.0692	6314							

Bruker Daltonics DataAnalysis 3.3

printed: 7/9/2015 11:00:54 AM

Page 1 of 1

