Supplementary Materials for RSC Advances

This journal is (c) The Royal Society of Chemistry 2015

Morphology controlled growth of ZnAl-layered double hydroxide and ZnO

nanorod hybrid nanostructures by solution method

Seong-Ho Baek^{1#}, Gwang-Hee Nam^{2#}, and Il-Kyu Park^{2*}

¹Energy Research Division, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 711-873, South Korea

²Department of Electronic Engineering, Yeungnam University, Gyeongbuk 712-749, South Korea

1. Fourier transform infrared (FTIR) spectroscopy results

Fourier transform infrared spectroscopy (FTIR, Thermo Scientific, Continuum) was measured for the ZnAl-layered double hydroxide (LDH) and ZnO nanorod (NR) structures on the ZnO/Al₂O₃ double seed layer with ZnO thicknesses of 0 and 15 nm, respectively. The ZnO NRs (blue line) shows no trace of the vibration mode from the chemicals, while that from the ZnAl-LDH shows some bands from the chemical species. It should be noted that the ZnAl-LDH shows band near 1381 cm⁻¹. The appearance of a strong band near 1381 cm⁻¹ can be assigned to the v3 nitrate group, NO₃⁻, the counter anion in the ZnAl-LDH [P. Fu, K. Xu, H. Song, G. Chen, J. Yang and Y. Niu, *J. Mater. Chem.*, 2010, **20**, 3869-3876.].

Figure S1. FTIR spectra of the ZnO NRs and ZnAl-LDH hybrid structures on the ZnO/Al₂O₃ double seed

[#] These authors contributed equally to this work.

^{*}Corresponding author. E-mail address: ikpark@ynu.ac.kr

layer with ZnO thicknesses of 0 and 15 nm.

2. Inductively coupled plasma mass spectrometry (ICP-MS)

Inductively coupled plasma mass spectrometry (ICP-MS; iCAP-Qs, Thermo Scientific) was measured for the ZnAl-LDH grown on the Al₂O₃/ZnO double seed layer with ZnO layer thicknesses of 0 nm. The sample was prepared by dissolving in an aqua regia consisting of hydrochloric acid (HCl) and nitric acid (HNO₃) with 3:1 ratio. The dissolved solution was diluted with DI water for analysis. The results show that the samples contain Al and Zn with 20 and 41wt%, respectively. Therefore, the Zn/Al ratio in the ZnAl-LDH in our sample was around 2, indicating that the formula of the LDH compounds is $[Zn_2 Al(OH)_2][NO_3^- mH_2O]$.

Figure S2. ICP-MS spectra of the ZnAl-LDH grown on the Al₂O₃/ZnO double seed layer with ZnO layer thicknesses of 0 nm.