Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Selective Palladium-Catalysed Arylation of Dihalopyridines Using N-Heterocyclic Carbene Ligands

Anant R. Kapdi,^{*a*,*} Dharmendra Prajapati^{*a*}, Carola Schulzke^{*b*} and Markus K. Kindermann^{*b*}

- [a] Department of Chemistry, Institutite of Chemical Technology
 Nathalal Parekh road, Matunga, Mumbai-400019, India
 E-mail: ar.kapdi@ictmumbai.edu.in
- [b] Institut Fur Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany.

Table of Contents

¹ H, ¹³ C NMRs for all the compounds	02
X-ray structure data for 4g	47
X-ray structure data for 6d	53

1H, 13C NMRs for all the compounds

X-ray data for 4g

Table 1. Crystal data and structure refinement for 4g.

Identification code	shelx
Empirical formula	C17 H12 Br N
Formula weight	310.19
Temperature	170(2) K
Wavelength ().71073 A
Crystal system, space grou	ip Monoclinic, P 21/c
Unit cell dimensions b = 7.2296(14) A beta = 9 c = 6.2594(13) A gamma	a = 28.494(6) A alpha = 90 deg. 92.33(3) deg. = 90 deg.
Volume 12	88.4(5) A^3
Z, Calculated density	4, 1.599 Mg/m^3
Absorption coefficient	3.174 mm^-1
F(000) 624	
Crystal size 0.4	482 x 0.465 x 0.241 mm
Theta range for data colle	ction 3.543 to 29.362 deg.
Limiting indices	32<=h<=38, -9<=k<=9, -7<=l<=8
Reflections collected / uni	que 12856 / 3336 [R(int) = 0.0980]
Completeness to theta = 2	5.000 94.7 %
Absorption correction	Numerical
Max. and min. transmissic	on 0.7225 and 0.0907
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parame	ters 3336 / 0 / 172

Goodness-of-fit on F^2 1.054

Final R indices [I>2sigma(I)] R1 = 0.0378, wR2 = 0.0913

R indices (all data) R1 = 0.0527, wR2 = 0.0995

Extinction coefficient n/a

Largest diff. peak and hole 0.424 and -1.112 e.A^-3

	x y	Z	U(eq)	
C(1)	967(1)	4881(3)	6489(4)	26(1)
C(2)	869(1)	5238(4)	4352(4)	33(1)
C(3)	1252(1)	5552(4)	3113(4)	32(1)
C(4)	1699(1)	5509(3)	4059(4)	28(1)
C(5)	1755(1)	5137(3)	6231(3)	21(1)
C(6)	2226(1)	5083(3)	7322(3)	19(1)
C(7)	2616(1)	5875(3)	6407(3)	24(1)
C(8)	3055(1)	5827(3)	7435(4)	24(1)
C(9)	3129(1)	4998(3)	9445(3)	19(1)
C(10)	2736(1)	4192(3)	10341(3)	22(1)
C(11)	2295(1)	4231(3)	9306(3)	22(1)
C(12)	3600(1)	4994(3)	10545(3)	19(1)
C(13)	3985(1)	5831(3)	9624(4)	26(1)
C(14)	4428(1)	5797(3)	10627(4)	29(1)
C(15)	4500(1)	4922(3)	12582(4)	29(1)
C(16)	4123(1)	4123(3)	13539(4)	29(1)
C(17)	3678(1)	4165(3)	12544(4)	26(1)
Br(1)	451(1)	4436(1)	8264(1)	38(1)
N(1)	1386(1)	4815(3)	7446(3)	24(1)

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for **4g** U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(1)-N(1)	1.314(3)
C(1)-C(2)	1.380(4)
C(1)-Br(1)	1.906(2)
C(2)-C(3)	1.385(4)
C(3)-C(4)	1.382(3)
C(4)-C(5)	1.389(3)
C(5)-N(1)	1.344(3)
C(5)-C(6)	1.482(3)
C(6)-C(11)	1.393(3)
C(6)-C(7)	1.393(3)
C(7)-C(8)	1.384(3)
C(8)-C(9)	1.402(3)
C(9)-C(10)	1.398(3)
C(9)-C(12)	1.483(3)
C(10)-C(11)	1.391(3)
C(12)-C(17)	1.397(3)
C(12)-C(13)	1.399(3)
C(13)-C(14)	1.387(3)
C(14)-C(15)	1.385(4)
C(15)-C(16)	1.377(4)
C(16)-C(17)	1.392(3)
N(1)-C(1)-C(2)	126.4(2)
N(1)-C(1)-Br(1)	115.82(17)
C(2)-C(1)-Br(1)	117.74(19)

Table 3. Bond lengths [A] and angles [deg] for 4g	

C(1)-C(2)-C(3)	116.1(2)
C(4)-C(3)-C(2)	119.4(2)
C(3)-C(4)-C(5)	119.4(2)
N(1)-C(5)-C(4)	121.7(2)
N(1)-C(5)-C(6)	116.79(19)
C(4)-C(5)-C(6)	121.5(2)
C(11)-C(6)-C(7)	117.6(2)
C(11)-C(6)-C(5)	120.94(19)
C(7)-C(6)-C(5)	121.49(19)
C(8)-C(7)-C(6)	121.28(19)
C(7)-C(8)-C(9)	121.9(2)
C(10)-C(9)-C(8)	116.4(2)
C(10)-C(9)-C(12)	122.44(19)
C(8)-C(9)-C(12)	121.16(19)
C(11)-C(10)-C(9)	121.84(19)
C(10)-C(11)-C(6)	121.0(2)
C(17)-C(12)-C(13)	117.1(2)
C(17)-C(12)-C(9)	121.6(2)
C(13)-C(12)-C(9)	121.23(19)
C(14)-C(13)-C(12)	121.4(2)
C(15)-C(14)-C(13)	120.5(2)
C(16)-C(15)-C(14)	119.1(2)
C(15)-C(16)-C(17)	120.6(2)
C(16)-C(17)-C(12)	121.3(2)
C(1)-N(1)-C(5)	116.96(19)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 4g

Th	e anisotropic displacement factor exponent takes the form	-2 pi^2 [h^2 a*	^2 U11 + +	2 h k a* b*
U12]			

	U11	U22	U33	U23	U13	U12
C(1)	17(1)	32(1)	29(1)	-1(1)	3(1)	-1(1)
C(2)	22(1)	44(1)	32(1)	2(1)	-6(1)	-2(1)
C(3)	28(1)	44(1)	25(1)	4(1)	-4(1)	-5(1)
C(4)	26(1)	34(1)	22(1)	0(1)	0(1)	-5(1)
C(5)	20(1)	21(1)	22(1)	-1(1)	1(1)	0(1)
C(6)	17(1)	20(1)	21(1)	-1(1)	2(1)	1(1)
C(7)	21(1)	29(1)	22(1)	5(1)	1(1)	-3(1)
C(8)	19(1)	28(1)	24(1)	5(1)	3(1)	-4(1)
C(9)	19(1)	18(1)	20(1)	0(1)	3(1)	2(1)
C(10)	18(1)	27(1)	21(1)	4(1)	3(1)	-1(1)
C(11)	18(1)	26(1)	21(1)	2(1)	4(1)	-2(1)
C(12)	17(1)	19(1)	22(1)	-1(1)	2(1)	2(1)
C(13)	18(1)	33(1)	27(1)	5(1)	3(1)	1(1)
C(14)	19(1)	36(1)	32(1)	4(1)	2(1)	-1(1)
C(15)	20(1)	34(1)	31(1)	-2(1)	-5(1)	3(1)
C(16)	28(1)	33(1)	26(1)	5(1)	-7(1)	0(1)
C(17)	25(1)	29(1)	24(1)	4(1)	1(1)	-4(1)
Br(1)	16(1)	64(1)	35(1)	1(1)	3(1)	-2(1)
N(1)	19(1)	30(1)	23(1)	-1(1)	1(1)	1(1)

X-ray data for 6d

Identification code	shelx
Empirical formula	C25 H17 N
Formula weight	331.39
Temperature	170(2) К
Wavelength	0.71073 A
Crystal system, space gro	oup Orthorhombic, P 21 21 21
Unit cell dimensions b = 11 c = 25	a = 6.4697(13) A alpha = 90 deg. .008(2) A beta = 90 deg. .007(5) A gamma = 90 deg.
Volume 1	781.0(6) A^3
Z, Calculated density	4, 1.236 Mg/m^3
Absorption coefficient	0.071 mm^-1
F(000) 69	5
Crystal size 0	.447 x 0.419 x 0.389 mm
Theta range for data coll	ection 3.252 to 26.756 deg.
Limiting indices	-8<=h<=7, -13<=k<=13, -30<=l<=31
Reflections collected / ur	nique 14188 / 3767 [R(int) = 0.0711]
Completeness to theta =	25.242 99.7 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / param	eters 3767 / 0 / 235
Goodness-of-fit on F^2	0.924
Final R indices [I>2sigmal	[I]] R1 = 0.0387, wR2 = 0.0800

Table 1. Crystal data and structure refinement for **6d**.

R indices (all data) R1 = 0.0602, wR2 = 0.0861

Extinction coefficient n/a

Largest diff. peak and hole 0.155 and -0.158 e.A^-3

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropicdisplacement parameters (A² x 10³) for dpa13.U(eq) is defined as one third of the trace of the orthogonalizedUij tensor.

	x y	Z	U(eq)	
C(1)	2985(3)	8243(2)	2897(1)	32(1)
C(2)	2359(4)	8783(2)	3386(1)	38(1)
C(3)	817(4)	9637(2)	3393(1)	49(1)
C(4)	-193(4)	9978(2)	2922(2)	58(1)
C(5)	394(4)	9504(3)	2448(1)	52(1)
C(6)	2029(4)	8642(2)	2414(1)	40(1)
C(7)	2715(4)	8187(3)	1922(1)	46(1)
C(8)	4266(4)	7341(3)	1899(1)	46(1)
C(9)	5175(4)	6919(2)	2372(1)	38(1)
C(10)	4580(3)	7344(2)	2863(1)	30(1)
C(11)	5608(3)	6857(2)	3350(1)	30(1)
C(12)	7751(4)	6827(2)	3391(1)	33(1)
C(13)	8648(4)	6360(2)	3848(1)	37(1)
C(14)	7385(4)	5949(2)	4256(1)	37(1)
C(15)	5264(4)	6005(2)	4191(1)	30(1)

C(16)	3809(4)	5582(2)	4616(1)	32(1)	
C(17)	3671(4)	6182(2)	5092(1)	37(1)	
C(18)	2248(4)	5832(2)	5488(1)	41(1)	
C(19)	972(4)	4855(2)	5407(1)	37(1)	
C(20)	1097(4)	4184(2)	4926(1)	30(1)	
C(21)	-156(4)	3154(2)	4832(1)	38(1)	
C(22)	-18(4)	2510(2)	4370(1)	41(1)	
C(23)	1383(4)	2863(2)	3974(1)	38(1)	
C(24)	2618(4)	3852(2)	4044(1)	33(1)	
C(25)	2521(4)	4547(2)	4523(1)	30(1)	
N(1)	4370(3)	6447(2)	3744(1)	31(1)	

Table 3. Bond lengths [A] and angles [deg] for dpa13.

C(1)-C(2)	1.418(3)
C(1)-C(6)	1.425(3)
C(1)-C(10)	1.433(3)
C(2)-C(3)	1.371(4)
C(3)-C(4)	1.398(4)
C(4)-C(5)	1.350(4)
C(5)-C(6)	1.424(4)
C(6)-C(7)	1.400(4)
C(7)-C(8)	1.370(4)
C(8)-C(9)	1.400(4)
C(9)-C(10)	1.368(3)
C(10)-C(11)	1.488(3)
C(11)-N(1)	1.348(3)
C(11)-C(12)	1.390(3)
C(12)-C(13)	1.382(3)
C(13)-C(14)	1.383(4)
C(14)-C(15)	1.383(3)
C(15)-N(1)	1.348(3)
C(15)-C(16)	1.494(3)
C(16)-C(17)	1.364(3)
C(16)-C(25)	1.430(3)
C(17)-C(18)	1.407(4)

C(18)-C(19)	1.371(4)
C(19)-C(20)	1.415(3)
C(20)-C(21)	1.413(3)
C(20)-C(25)	1.421(3)
C(21)-C(22)	1.358(3)
C(22)-C(23)	1.397(4)
C(23)-C(24)	1.361(3)
C(24)-C(25)	1.423(3)

C(2)-C(1)-C(6)	118.5(2)

- C(2)-C(1)-C(10) 123.1(2)
- C(6)-C(1)-C(10) 118.4(2)
- C(3)-C(2)-C(1) 120.5(2)
- C(2)-C(3)-C(4) 120.8(3)
- C(5)-C(4)-C(3) 120.3(3)
- C(4)-C(5)-C(6) 121.2(3)
- C(7)-C(6)-C(5) 121.7(2)
- C(7)-C(6)-C(1) 119.7(2)
- C(5)-C(6)-C(1) 118.6(3)
- C(8)-C(7)-C(6) 120.9(2)
- C(7)-C(8)-C(9) 119.8(3)
- C(10)-C(9)-C(8) 121.7(2)
- C(9)-C(10)-C(1) 119.5(2)
- C(9)-C(10)-C(11) 119.0(2)
- C(1)-C(10)-C(11) 121.5(2)

N(1)-C(11)-C(12)	122.1(2)
N(1)-C(11)-C(10)	116.97(19)
C(12)-C(11)-C(10)	121.0(2)
C(13)-C(12)-C(11)	119.2(2)
C(12)-C(13)-C(14)	118.9(2)
C(13)-C(14)-C(15)	119.0(2)
N(1)-C(15)-C(14)	122.6(2)
N(1)-C(15)-C(16)	115.6(2)
C(14)-C(15)-C(16)	121.8(2)
C(17)-C(16)-C(25)	119.3(2)
C(17)-C(16)-C(15)	120.7(2)
C(25)-C(16)-C(15)	120.1(2)
C(16)-C(17)-C(18)	121.7(2)
C(19)-C(18)-C(17)	120.3(2)
C(18)-C(19)-C(20)	120.1(2)
C(21)-C(20)-C(19)	121.8(2)
C(21)-C(20)-C(25)	118.7(2)
C(19)-C(20)-C(25)	119.5(2)
C(22)-C(21)-C(20)	121.4(2)
C(21)-C(22)-C(23)	120.0(2)
C(24)-C(23)-C(22)	120.8(2)
C(23)-C(24)-C(25)	120.7(2)
C(20)-C(25)-C(24)	118.3(2)
C(20)-C(25)-C(16)	119.2(2)
C(24)-C(25)-C(16)	122.5(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for dpa13.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C(1)	26(1)	29(1)	41(1)	8(1)	0(1)	-5(1)
C(2)	35(1)	30(1)	48(2)	6(1)	6(1)	0(1)
C(3)	46(2)	32(1)	70(2)	1(1)	16(2)	2(1)
C(4)	39(2)	36(1)	97(3)	17(2)	7(2)	8(1)
C(5)	36(2)	44(2)	75(2)	24(2)	-8(2)	-1(1)
C(6)	31(1)	38(1)	52(2)	15(1)	-7(1)	-9(1)
C(7)	44(2)	54(2)	40(2)	13(1)	-8(1)	-16(1)
C(8)	45(2)	55(2)	38(2)	2(1)	3(1)	-15(1)
C(9)	33(1)	39(1)	42(2)	-1(1)	4(1)	-6(1)
C(10)	26(1)	30(1)	35(1)	3(1)	2(1)	-4(1)
C(11)	26(1)	26(1)	37(1)	0(1)	2(1)	0(1)
C(12)	27(1)	28(1)	43(1)	-1(1)	3(1)	0(1)
C(13)	25(1)	34(1)	52(2)	-1(1)	-2(1)	2(1)
C(14)	35(1)	30(1)	45(1)	3(1)	-7(1)	3(1)
C(15)	32(1)	24(1)	35(1)	0(1)	-3(1)	0(1)
C(16)	32(1)	28(1)	35(1)	2(1)	-4(1)	3(1)

C(17)	42(1)	32(1)	39(2)	-2(1)	-5(1)	-1(1)
C(18)	52(2)	38(1)	34(1)	-4(1)	0(1)	8(1)
C(19)	41(2)	37(1)	34(1)	2(1)	2(1)	7(1)
C(20)	29(1)	29(1)	33(1)	6(1)	-1(1)	5(1)
C(21)	32(1)	37(1)	43(2)	4(1)	2(1)	0(1)
C(22)	34(1)	39(1)	50(2)	-2(1)	-1(1)	-6(1)
C(23)	38(1)	37(1)	38(1)	-3(1)	-4(1)	-2(1)
C(24)	32(1)	33(1)	33(1)	4(1)	2(1)	1(1)
C(25)	26(1)	28(1)	35(1)	3(1)	-5(1)	4(1)
N(1)	27(1)	31(1)	36(1)	2(1)	1(1)	1(1)

Table 5. Hydrogen bonds for dpa13 [A and deg.].

Donor --- H....Acceptor D - H H...A D...A D - H...A

C(2) --H(2) ..N(1) 0.93 2.49 3.0189 116